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This section includes the most cotmnonly used notation in this book. In order 
to avoid departing too much from conventions normally used in literature on 
turbulence modeling and general fluid mechanics, a few symbols denote more 

than one quantity. 

English Symbols 

Symbol 
a 
aijkl 
An, Bn, Cn, Dn 
A+ 
Aij 
bij 
CJ 
Cfoo 
Cp, Cv 
c 
CK 
Cp 
Cs 
cij 
cijk 
Ctim 
d 

D 
Dij 
e 

E 
E(K,) 

Definition 
Speed of sound; strain rate 
Tensor in rapid-pressure-strain term 
Coefficients in tridiagonal matrix equation 

Van Driest damping coefficient 
Slow pressure-strain tensor 
Dimensionless Reynolds-stress anisotropy tensor 
Skin friction based on edge velocity, T w I ( � pU;) 
Skin friction based on freestream velocity, T w I ( � pU!) 
Specific heat for constant pressure, volume 

Additive constant in the law of the wall 
Kolmogorov constant 
Pressure coefficient, ( P - P =)I ( � pU!) 
Smagorinsky constant 
LES cross-term stress tensor 
Turbulent transport tensor 
Stress-limiter strength 
Distance from closest surface 

Drag per unit body width; diameter 

The tensor Tim8Uml8xj + Tjm8Uml8xi 
Specific internal energy 
Total energy 
Energy spectral density 

• 

Xl 



• • 

xu 

E(TJ) 
Eh 
f(x;r) 
�� 
f, fv 
F(TJ) 
FKleb(y; 8) 
F, Fv 
G 
G(x- e) 
h 
H 
H(x) 
i, j, k 
I 
II, III 

• 

J 
J 
k 
kg 
ks 
J( 

K(TJ) 
Kn 
c 

Crnfp 
Cmix 
CJL 
L 
La 
Lij 
m 

M 
Mijkl 
Me 
Mt 
MT 
n 
N(TJ) 
NcFL 
N(ui) 
p 

Dimensionless self-similar dissipation rate 

Discretization error 

Longitudinal correlation function 

Vortex -stretching function 

Turbulence-flux vectors 

Dimensionless self-similar streamfunction 

Klebanoff intermittency function 

Mean-flow flux vectors 

NOTATION 

Amplitude factor in von Neumann stability analysis 

LES filter 
Specific enthalpy 

Total enthalpy; channel height; shape factor, 8* I 8 
Heaviside step function 

Unit vectors in x, y, z directions 
Unit (identity) matrix 

Stress-tensor invariants 
Two-dimensional (j 0), axisymmetric (j 1) index 

Specific momentum flux (flux per unit mass) 
Kinetic energy of turbulent fluctuations per unit mass 

Geometric progression ratio 

Surface roughness height 
Distortion parameter 

Dimensionless self-similar turbulence kinetic energy 

Knudsen number 

Turbulence length scale; characteristic eddy size 

Mean free path 
Mixing length 

von Karman length scale 

Characteristic length scale 

Reattachment length 

Leonard-stress tensor 

Molecular mass; round/radial jet index 

Ma�h number 

Tensor in rapid-pressure-strain term 

Convective Mach number 

Turbulence Mach number, 2k /a 
Turbulence Mach number, U7 I aw 
Normal distance; number density 

Dimensionless self-similar eddy viscosity 

CFL number 

Navier-Stokes operator 

Instantaneous static pressure 



NOTATION 

Pii 
p 
Pii 
Pk, Pw, Pe 
PrL, Prr 
p+ 
qj 
qw 

qL ·' qT. 
1 J 

Qij 
q, Q 
r, (), x 
R 
Rii 
Rij(x,t;r) 
n 

RE(x; t') 
Rij(X, t; n 
R+ 
ReL 
Rer 
Rer 
Rir 
Ry 
s 

Sij 
s, s 

s 
sij 

0 

Sii 
Se, Sb Su, Sw 
SB 
Sn 
t 
tij 
T 
T' 
u, v, w 

Ui 
u 

u
' 

v
' 

w' 
' ' 

u
' 
t 

Instantaneous momentum-flux tensor 

Mean static pressure; turbulence-energy production, � Pii 
Production tensor, T.im8Uj/8xm + Tjm8Ud8xm 
Net production per unit dissipation of k, w, E 

Laminar, turbulent Prandtl number 

. . .  

Xlll 

Dimensionless pressure-gradient parameter, ( vw / pu� )dP / dx 
Heat-flux vector 

Surface heat flux ' 

Laminar, turbulent mean heat-flux vector 

LES stress tensor, Cij + Rij 
Dependent-variable vectors 
Cylindrical polar coordinates 

Pipe radius; channel half height; perfect-gas constant 

SGS Reynolds stress tensor 

Two-point velocity correlation tensor 

Radius of curvature 

Eulerian time-correlation coefficient 
Autocorrelation tensor 

Sub layer scaled radius or half height, u7R/ v 
Reynolds number based on length L 

Turbulence Reynolds number, k112f/t/ 
Sub layer scaled radius or half height, R+ 
Turbulence Richardson number 

Near-wall turbulence Reynolds number, k112yjv 
Arc length 

Instantaneous strain-rate tensor 

Source-term vectors 
Source term; shear rate 

Mean strain-rate tensor 

Oldroyd derivative of Sij 
Source tenns in a similarity solution 

Dimensionless surface mass-injection function 

Dimensionless surface-roughness function 

Time 

Instantaneous viscous stress tensor 

Temperature; characteristic time scale 

Freestream turbulence intensity 

Instantaneous velocity components in x, y, z directions 

Instantaneous velocity in tensor notation 

Instantaneous velocity in vector notation 

Fluctuating velocity components in x, y, z directions 

Fluctuating velocity in tensor notation 
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XlV 

u' 
A A A u, v, w 

- - -u,v,w 
-
u 
u" v" w" ' ' 

u�' t 

u" 
Urms, Vrms 
u�u'-z J 

Ur 
Q 
u* 
U, V, W 
u 
Ue 
ui 
u= 
u+ 
Urn 
U("l) 
Vm-ix 
Vth 
Vw V("l) 
W("l) x,y, z 

Xi 
X 
y+ 
Yi-
Ym 

NOTATION 

Fluctuating velocity in vector notation 

Relative turbulence intensity, u'2 /Ue, v'2 /Ue, w'2 /Ue 
Favre-averaged velocity components in x, y, z directions 
Favre-averaged velocity in tensor notation 
Favre-averaged velocity in vector notation 
Favre fluctuating velocity components in x, y, z directions 
Favre fluctuating velocity in tensor notation 
Favre fluctuating velocity; fluctuating molecular velocity 
RMS fluctuating velocity components in x, y directions 
Temporal average of fluctuating velocities 

Friction velocity, J T w / Pw 
Velocity perturbation vector 
Van Driest scaled velocity 
Mean velocity components in x, y, z directions 
Mean velocity in vector notation 
Shear-layer edge velocity 
Mean velocity in tensor notation 
Freestream velocity 
Dimensionless, sublayer-scaled, velocity, U/ur 
Maxunum or centerline velocity 
Dimensionless self-similar streamwise velocity 
Mixing velocity 
Thermal velocity 
Surface injection velocity 
Dimensionless self-similar notmal velocity 
Dimensionless self-similar specific dissipation rate 
Rectangular Cartesian coordinates 
Position vector in tensor notation 
Position vector in vector notation 
Dimensionless, sublayer-scaled, distance, ury/v 
y+ at first grid point above surface 
hmer/outer layer matching point 

, 

Greek Symbols 

Symbol Definition 
Defect-layer similarity parameters 
Bradshaw's constant 
Equilibrium parameter, ( 6* / T w )dP / dx 
Specific-heat ratio, cp/ Cv 

Boundary-layer or shear-layer thickness 



NOTATION 

8vi 
J' 
J* 
8* v 
8x 
8ij 
� 
�(x) 
�q, �Q 
�X, �y 
�t 
E 
Ed 
Es 
Eij 
Eijk 
( 
'f/ 
0 

VT 
VT ' 

VTo 
e 
II 
rrij 
IT�w) �] 
p 
a(x) 
T 

Viscous-interface layer thickness 
Free shear layer spreading rate 

Displacement thickness, f� 1 - f; K 
Velocity thickness, J� 1 - K dy 
Finite-difference matrix operator 
Kronecker delta 
LES filter width 
Clauser thickness, Ue 8* I U-r 
Incremental change in q, Q 
Incremental change in x, y 
Timestep 
Dissipation per unit mass 
Dilatation dissipation 
Solenoidal dissipation 
Dissipation tensor 
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"How do you think you would do if you tried a shock-wave/boundary-layer 
interaction with a stronger shock?" 

The question came from one of the hardy souls who had endured the July 
heat of Palm Springs to attend the Open Forum sessi.on tagged on at the end 
of the 1 973 AIAA summer meeting. Although my memory is a bit sketchy, I 
believe he preceded his question by identifying himself as Robert MacCormack 
of the NASA Ames Research Center and the conversation went like this. 

"Well, this case causes the pressure to rise by a factor of about three and I 
have a case running now that has a pressure rise of around five," I replied. "I' ll 
be able to tell you a week from now how things tum out." Such computations 
took about 40 hours of CPU time on a UNIVAC 1 1 08 in those days. 

"I was thinking of a shock that increases static pressure by a factor of sev
enty," MacCormack responded. 

"Oh wow!" I was really intrigued. "These are first-of-a-kind computations, 
and I really don't  know. Tackling that tough a problem would require some 
contract support from NASA Ames and a lot of CDC 7600 time. Perhaps we 
can talk about it after the session ends." 

That exchange indeed led to a series of contracts from NASA Ames and 
helped me achieve a goal I had set for myself in high school, namely, to found 
my own business before my thirtieth birthday. However, while my research efforts 
under NASA Ames sponsorship produced useful results, I was unsuccessful in 
obtaining a satisfactory solution for that factor-of-seventy pressure rise case. That 
awaited a key improvement to the k-w model and the arrival of the extremely-fast, 
and very inexpensive, personal computer that rests on my desktop today. 

I mention that meeting of 33 summers ago to explain why writing the third 
edition of Turbulence Modeling for CFD has been one of the greatest joys of 
my life. This edition represents, for me, a mission accomplished. It's a mission 
I scoped out for myself three decades ago when I was fresh out of Cal tech and 
bound for that fateful 1 973 AIAA meeting. What was that mission? To develop a 
set of turbulence-model equations that, with an absolute minimum of complexity, 
would accurately compute properties of a series of roughly 1 00 test cases . 

• • 
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Over the years I have assembled a set of test cases that I deem essential for 
validating a turbulence model. The set includes attached boundary layers, free 
shear flows, backward-facing steps and shock-separated flows to mention a few, 
most dealing with Mach numbers from incompressible speeds to hypersonic. 
Over the years my list of test cases has expanded, but the core cases were 
established long ago. One of those cases is the Mach 1 1  shock-wave/boundary
layer interaction that Bob MacConnack cited at that 1 973 AIAA meeting. 

As time has passed, I have improved the k-w model that I inherited from my 
PhD thesis adviser, Philip Saffman. With the publishing of the second edition 
of the book, the model was quite suitable for all but shock-separated flows and 
was demonstrably superior to all models of comparable complexity. As a result, 
the model has gained wide acceptance in the Computational Fluid Mechanics 
community. As an added benefit, other researchers have begun to address some 
of the model' s  shortcomings. Two key papers have appeared since I published 
the second edition that had a major impact on my research efforts. 

The first is by Johan Kok who demonstrated that cross diffusion can be added 
to the model with no serious degradation of accuracy for attached boundary layers. 
Most important, he did it without doubling the number of closure coefficients by 
introducing complicated "blending functions." I had dabbled with cross diffusion 
in the early 1 990s but abandoned it for a variety of reasons, one of which was 
concern about its adverse impact on boundary layers. 

The second is a paper by a longtime friend, George Huang, who showed 
me how profound the effect of a stress limiter is, and how it could resolve the 
model ' s  shortcomings for shock-separated flows at all Mach numbers. Again, I 
had tried it about a decade ago, achieved some success for a transonic airfoil, but 
never formally integrated a limiter into the model . With the formal integration 
of cross diffusion and a stress limiter into the k-w model, my 1 00-or-so test 
case mission has been accomplished with just 6 closure coefficients and no 
compressibility modifications! 

And, oh yes, the model now does a nice job computing properties of that 
flow my friend Bob MacCormack asked about way back in 1 973. It' s  taken me 
an awful lot longer than I could have ever predicted, but I suppose that's the 
nature of scientific r�earch and even more significantly the erratic nature 
of funds available for basic research. 

Of course, more research and validation needs to be done in order to arrive 
at a general-purpose turbulence model. None of my test cases are for three
dimensional flows, for example, and only a couple involve heat transfer. Ap
plying any empirical model beyond the types of applications for which it has 
been validated is an adventure that may or may not yield satisfactory results. So, 
while I have now accomplished the research task I laid out for myself way back 
in the 1 970s, I would be the first to say that we can still aim even higher. Many 
of today' s turbulence researchers are indeed doing precisely that. 
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In addition to my desire to document my personal contributions to the field, 
the third edition of Turbulence Modeling for CFD has been motivated by its 
continuing popularity. It has been adopted for course use in universities all 
around the world and I have presented a short course based on the book many 
times in the United States and beyond since I first published it in 1993. Demand 
for the book continues to exceed all of my expectations, and I am very grateful 
to the turbulence-research and CFD communities. While I}ew developments in 
the field have come far less frequently since the book first appeared, a few useful 
advances, such as the two noted above, have been made. I have been as diligent 
as possible in integrating new developments into the third edition. 

The most noteworthy development in turbulence modeling since publication 
of the second edition has been the detached-eddy simulation (DES) concept. 
Consequently, I have added a major section to Chapter 8 addressing this promis
ing technique. Other revisions the reader will find in the third edition of the text 
are as follows. 

• I have made significant improvements to the k-w and Stress-uJ models that 
have been the focus of my own research, most notably with regard to the 
proper role of cross diffusion in such models and a stress limiter for the 
k-w model. I have also revised and improved the boundary conditions for 
surfaces that are rough and/or have mass transfer. 

•· As with previous editions, the book comes with a companion Compact 
Disk (CD) that contains source code and documentation for several useful 
computer programs. In addition to the software provided with the first and 
second editions, the CD includes a two-dimensional/axisymmetric Navier
Stokes program and some simple grid-generation software. The CD also 
contains input-data files for most of the test cases used in this book to test 
and validate turbulence models. 

• The software on the CD has been modernized and optimized for personal 
computers running the Microsoft Windows operating system. All programs 
have menu-driven input-data preparation and plotting utilities, written en
tirely in Visual C++, that provide a user-friendly environment. 

• I have added some new homework problems to enhance the book's utility 
in the classroom. 

Turbulence Modelingfor CFD maintains its basic theme, which is description 
of and development tools for engineering models of turbulence. While it is 
currently fashionable for turbulence researchers to focus their efforts on Direct 
Numerical Simulation, Large Eddy Simulation, Detached Eddy Simulation, etc. ,  
these models are not yet suitable for day-to-day engineering design and analysis. 
As in earlier editions of Turbulence Modeling/or CFD, Chapter 8 provides a brief 
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introduction with suitable references to provide the reader with a good starting 
point for further study. However, such methods are worthy of a complete text. 
Further expansion of this text's  coverage of these topics would run counter to 
the overall theme of the book, which would dilute its quality. 

This book originated from the lecture notes that I used in presenting a graduate 
course on turbulence modeling at the University of Southern California. While 
several computational fluid dynamics (CFD) texts include some infotmation about 
turbulence modeling, very few texts dealing exclusively with turbulence modeling 
have been written. As a consequence, turbulence modeling is regarded by many 
CFD researchers as "black magic," lacking in rigor and physical foundation. 
This book has been written to show that turbulence modeling can be done in 
a systematic and physically-sound manner. This is not to say all turbulence 
modeling has been done in such a manner, for indeed many ill-conceived and ill
fated turbulence models have appeared in engineering journals. However, with 
judicious use of relatively simple mathematical tools, systematic construction of 
a well-founded turbulence model is not only possible but can be an exciting and 
challenging research project. 

Thus, the primary goal of this book is to provide a systematic approach to 
developing a set of constitutive equations suitable for computation of turbulent 
flows. The engineer who feels no existing turbulence model is suitable for his or 
her needs and wishes to modifY an existing model or to devise a new model will 
benefit from this feature of the text. A methodology is presented in Chapters 3 
and 4 for devising and testing such equations. The methodology is illustrated 
in great detail for two-equation turbulence models. However, it is by no means 
limited to such models and is used again in Chapter 6 for a full stress-transport 
model, but with less detail. 

A secondary goal of this book is to provide a rational way for deciding how 
complex a model is required for a given problem. The engineer who wishes to 
select an existing model that is sufficient for his or her needs will benefit most 
from this feature of the text. Chapter 3 begins with the simplest turbulence models 
and subsequent chapters chart a course leading to some of the most complex 
models that have been applied to a nontrivial turbulent-flow problem. Two 
things are done at ea� level of complexity. First, the range of applicability of the 
model is estimated. Second, many of the models are applied to the same flows, 
including comparisons with measurements, to illustrate how accuracy changes 
with complexity. 

The methodology makes extensive use of tensor analysis, similarity solutions, 
singular-perturbation methods, and numerical procedures. The text assumes the 
user has limited prior knowledge of these mathematical concepts and provides 
what is needed in the main text or in the Appendices. For example, Appendix A 
introduces Cartesian tensor analysis to facilitate manipulation of the Navier
Stokes equation, which is  done extensively in Chapter 2. Chapter 3 shows, in 
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detail, the way a similarity solution is generated. Similarity solutions are then 
obtained for the turbulent mixing layer, jet and far wake. Appendix B presents 
elements of singular-perturbation theory. Chapters 4, 5 and 6 use these tools to 
dissect model-predicted features of the turbulent boundary layer. 

No book on turbulence-model equations is complete without a discussion of 
numerical-solution methods. Anyone who has ever tried to obtain a numeri
cal solution to a set of turbulence-transport equations can, attest to this. Often, 
standard numerical procedures just won't work and altemative methods must be 
found to obtain accurate converged solutions. Chapter 7 focuses on numerical 
methods and elucidates some of the commonly encountered problems such as 
stiffness, sharp turbulent-nonturbulent interfaces, and difficulties attending tur
bulence related time scales. 

The concluding chapter presents a brief overview of new horizons, including 
direct numerical simulation (DNS), large-eddy simulation (LES), detached-eddy 
simulation (DES) and the interesting mathematical theory of chaos. 

Since turbulence modeling is a key CFD ingredient, the text would be incom
plete without companion software implementing numerical solutions to standard 
turbulence-model equations. The book's companion CD includes several pro
grams with Fortran source code and detailed user's information. The programs 
all have similar structllre and can be easily modified to include new models. 

The material presented in this book is appropriate for a one-semester, first or 
second year graduate course, or as a reference text for a CFD course. Successful 
study of this material requires an understanding of viscous-flow and boundary
layer theory. Some degree of proficiency in solving partial differential equations 
is also needed. A working knowledge of computer programming, preferably in 
FORTRAN, the most common programming language in engineering, 'Nill help 
the reader gain maximum benefit from the software on the companion CD. 

I have been blessed over the years with a series of colleagues and friends 
who have contributed to the quality and accuracy of the material contained in 
Turbulence Modeling for CFD. Their contributions are as follows. 

Third Edition: Drs. T. Coakley and M. Olsen were extremely helpful in their 
review of the manuscript. Their close attention to detail and extensive knowledge 
of turbulence modeling made them outstanding reviewers. Drs. J. Forsythe, 
P. J. Roache and G. Huang provided several figures and valuable research papers. 

Second Edition: Prof. P. Bradshaw reviewed the entire manuscript as I wrote 
it, and taught me a lot through numerous discussions, comments and suggestions 
that greatly improved the final draft. Prof. Bradshaw also assisted in preparation 
of key material in Chapters 5 and 8, adding physical insight and state-of-the-art 
information. One of my best graduate students, Patrick Yee, was very thorough in 
reviewing the second edition, including the solutions manual. Dr. C .  G. Speziale 
also provided an excellent review. 



• •  

xxn PREFACE 

First Edition: Prof. P. Bradshaw and Dr. C. G. Speziale reviewed the 
manuscript and offered a great deal of insight in the process. Dr. D. D. Knight 
helped me understand why I had to write this book, reviewed the entire text 
and assisted in its preparation by introducing me to Jb.TFX. My favorite Caltech 
mathematics teacher, Dr. D. S. Cohen, made sure I omitted the dot over ev
ery 1., and crossed every z in Appendix B. Drs. F. R. Menter, C. C. Horstman 
and P. R. Spalart were kind enough to provide results of several of their com
putations in digital form. Thanks are also due for the support and help of 
several other friends, most notably Dr. P. J. Roache, Dr. J .  A. Domaradzki and 
Prof. R. M. C. So. 

I extend my thanks to Dr. L. G. Redekopp of USC for encouraging and 
supporting development of the course for which this book was originally intended. 
I also thank the nine students who were the first to take the course that this 
book was written for. Their patience was especially noteworthy, particularly 
in regard to typographical errors in the homework problems! That outstanding 
group of young engineers is D. Foley, R. T. Holbrook, N. Kale, T.-S. Leu, H. Lin, 
T. Magee, S. Tadepalli, P. Taniguchi and D. Hammond. 

Finally, I owe a lifelong debt to my loving wife Barbara for tolerating the 
hectic pace first in college and then in the business world. Without her, this 
book would not have been possible. 

David C. Wilcox 

NOTE: We have taken great pains to assure the accuracy of this manuscript. 
However, if you find errors, please report them to DCW Industries' Home 
Page on the Worldwide Web at http://dcwindustries.com. As long as 
we maintain a WWW page, we will provide an updated list of known 
typographical errors. 



This book has been described by many writers as the "how-to guide for engineers 
interested in computing turbulent flows." This description is consistent with the 
contents of the book in the following sense. While the text provides some dis
cussion of the physics of turbulent flows, it is by no means a thorough treatise on 
the complexities of the phenomenon. Rather, the discussion focuses on the most 
significant aspects of turbulence that underlie the engineering approximations 
introduced over the decades to facilitate affordable numerical computations. 

In other words, the book presents as much of the physics of turbulence 

as necessary to understand why existing modeling approximations have been 
made but no more. This is true because the theme of the book is the modeling 
of turbulence, which begins with understanding the physics involved. However, 
it also involves correlation of measurements, engineering judgment, a healthy 
dose of mathematics and a lot of trial and error. 

The field is, to some extent, a throwback to the days of Prandtl, Taylor, von 
Karm�n and all the many other clever engineers who spent a good portion of their 
time devising engineering approximations and models describing complicated 

Figure 1.1: Pioneers of turbulence modeling; from left Ludwig Prandtl (18 75-
1953), Geoffrey Taylor (188 6-1975) and Theodore von Karmtm (1881-1 963). 

1 
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physical flows. The best efforts in turbulence modeling have been an attempt to 
develop a set of constitutive equations suitable for application to general turbulent 
flows, and to do it in as elegant and physically sound a manner as possible. These 
three fluid mechanics pioneers helped establish a solid framework for several 
generations of engineers to work in. 

Turbulence modeling is one of three key elements in Computational Fluid 
Dynamics (CFD). Very precise mathematical theories have evolved for the other 
two key elements, viz., grid generation and algorithm development. By its nature 
- in creating a mathematical model that approximates the physical behavior of 
turbulent flows far less precision has been achieved in turbulence modeling. 
This is not really a surprising event since our objective has been to approximate 
an extremely complicated phenomenon. Two key questions we must ask at the 
outset are the following. What constitutes the ideal turbulence model and how 
complex must it be? 

1.1 Definition of an Ideal Turbulence Model 

Simplicity combined with physical insight seems to have been a common de
nominator of the work of great men like Prandti, Taylor and von Karman. Using 
their work as a gauge, an ideal model should introduce the minimum amount 
of complexity while capturing the essence of the relevant physics. This 
description of an ideal model serves as the keystone of this text. 

1.2 How Complex Must Turbulence Model Be? 

Aside from any physical considerations, turbulence is inherently three dimen
sional and time dependent. Thus, an enormous amount of information is re
quired to completely describe a turbulent flow. Fortunately, we usually require 
something less than a complete time history over all spatial coordinates for every 
flow property. Thus, for a given turbulent-flow application, we must pose the 
following question. �iven a set of initial and/or boundary conditions, how do we 
predict the relevant properties of the flow? What properties of a given flow are 
relevant is generally dictated by the application. For the simplest applications, 
we may require only the skin-friction and heat-transfer coefficients. More eso
teric applications may require detailed knowledge of energy spectra, turbulence 
fluctuation magnitudes and scales. 

Certainly, we should expect the complexity of the mathematics required for a 
given application to increase as the amount of required flowfield detail increases. 
On the one hand, if all we require is skin friction for an attached flow, a simple 
mixing-length model (Chapter 3) may suffice. Such models are well developed 
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and can be implemented with very little specialized knowledge. On the other 
hand, if we desire a complete time history of every aspect of a turbulent flow, 
only a solution to the complete Navier-Stokes equation will suffice. Such a 
solution requires an extremely accurate numerical solver and may require use 
of subtle transform techniques, not to mention vast computer resources. Most 
engineering problems fall somewhere between these two extremes. 

Thus, once the question of how much detail we need is answered, the 
level of complexity of the model follows, qualitatively s�eaking.1 In the spirit 
of Prandtl, Taylor and von Karman, the conscientious engineer will strive to use 
as conceptually simple an approach as possible to achieve his ends. Overkill is 
often accompanied by unexpected difficulties that, in CFD applications, almost 
always manifest themselves as numerical difficulties! 

1.3 Comments on the Physics of Thrbulence 

Before plunging into the mathematics of turbulence, it i,s worthwhile to first 
discuss physical aspects of the phenomenon. The following discussion is not 
intended as a complete description of this complex topic. Rather, we focus upon 
a few features of interest in engineering applications, and in constmction of a 
mathematical model. For a more--complete introduction, refer to basic texts on 
the physics of turbulence such as those by Hinze ( 1 975), Tennekes and Lumley 
( 1 983), Landahl and MoHo-Christensen ( 1 992), Libby ( 1996) or Durbin and 
Pettersson Reif (200 1) .  

1.3.1 Importance of Thrbulence in Practical Situations 

For "small enough" scales and "low enough" velocities, in the sense that the 
Reynolds number is not too large, the equations of motion for a viscous fluid have 
well-behaved, steady solutions. Such flows are controlled by viscous diffusion 
of votiicity and momentum. The motion is termed laminar and can be observed 
experimentally and in nature. 

At larger Reynolds numbers, the fluid's inertia overcomes the viscous stresses, 
and the laminar motion becomes unstable. Rapid velocity and pressure fluctua· 
tions appear and the motion becomes inherently three dimensional and unsteady. 
When this occurs, we describe the motion as being turbulent. In the cases of 
fully-developed Couette flow and pipe flow, for example, laminar flow is assured 
only if the Reynolds number based on maximum velocity and channel height or 
pipe radius is less than 1 500 and 2300, respectively. 

1 This is not a foolproof criterion, however. For example, a complicated model may be required 

to predict even the simplest properties of a very complex flow. 
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Figure 1.2: Examples of turbulent motion. Upper left: a cumulus cloud; Upper 
right: flow in the wake of a cylinder; Bottom: flow in the wake of a bullet 
{Bottom photograph courtesy of Corrsin and Kistler (1954)}. 

Virtually all flows of practical engineering interest are turbulent. Flow past 
vehicles such as rockets, airplanes, ships and automobiles, for example, is al

ways turbulent. Turbulence dominates in geophysical applications such as river 
? 

currents, the planetary boundary layer and the motion of clouds (Figure 1.2). 

Turbulence even plays a role at the breakfast table, greatly enhancing the rate at 

which sugar and cream mix in a cup of coffee! 

Turbulence matters even in applications that normally involve purely laminar 

flow. For example, blood flow is laminar in the arteries and veins of a healthy 

human. However, the presence of turbulence generally corresponds to a health 

problem such as a defective heart valve. 

Turbulent flow always occurs when the Reynolds number is large. For slightly 

viscous fluids such as water and air, "large" Reynolds number corresponds to 
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anything stronger than a tiny swirl, a small breeze or a puff of wind. Thus, 
to analyze fluid motion for general applications, we must deal with turbulence. 
Although vigorous research has been conducted to help discover the mysteries of 
turbulence, it has been called the major unsolved problem of classical physics! 
In the following subsections, we will explore some of the most important aspects 
of turbulence. 

1.3.2 General Properties of Turbulence 

• Basic Definition. In 1937, von Karman defined turbulence in a presen
tation at the Twenty-Fifth Wilbur Wright Memorial Lecture entitled "Tur
bulence." He quoted G. I. Taylor as follows [see von Karman ( 1 93 7)]: 

"Turbulence is an irregular motion which in general makes its 
appearance in fluids, gaseous or liquid, when they flow past 
solid suifaces or even when neighboring streams of the same 
fluid flow past or over one anothe1: " 

As the understanding of turbulence has progressed, researchers have found 
the terrn "irregular motion" to be too imprecise. Simply stated, an irregular 
motion is one that is typically aperiodic and that cannot be described as 
a straightfonvard function of time and space coordinates. An irregular 
motion might also depend strongly and sensitively upon initial conditions. 
The problem with the Taylor-von Karman definition of turbulence lies in 
the fact that there are nonturbulent flows that can be described as irregular. 

Turbulent motion is indeed irregular in the sense that it can be described by 
the laws of probability. Even though instantaneous properties in a turbulent 
flow are extremely sensitive to initial conditions, statistical averages of 
the instantaneous properties are not. To provide a sharper definition of 
turbulence, Hinze ( 1 975) offers the following revised definition: 

"Turbulent fluid motion is an irregular condition of flow in 
which the various quantities show a random variation with time 
and space coordinates, so that statistically distinct average val
ues can be discerned. " 

To complete the definition of turbulence, Bradshaw [ cf. Cebeci and Smith 
( 197 4)] adds the statement that turbulence has a wide range of scales. 
Time and length scales of turbulence are represented by frequencies and 
wavelengths that are revealed by a Fourier analysis of a turbulent-flow 
time history. 

The irregular nature of turbulence stands in contrast to laminar motion, 
so called historically because the fluid was imagined to flow in smooth 
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laminae, or layers. In describing turbulence, many researchers refer to 
eddying motion, which is a local swirling motion where the vorticity can 
often be very intense. Thrbulent eddies of a wide range of sizes appear and 
give rise to vigorous mixing and effective turbulent stresses (a consequence 
of the "mixing" of momentum) that can be enormous compared to laminar 
values. 

• Instability and Nonlinearity. Analysis of solutions to the Navier-Stokes 
equation, or more typically to its boundary-layer fmm, shows that turbu
lence develops as an instability of laminar flow. To analyze the stability 
of laminar flows, classical methods begin by linearizing the equations of 
motion. Although linear theories achieve some degree of success in predict
ing the onset of instabilities that ultimately lead to turbulence, the inherent 
nonlinearity of the Navier-Stokes equation precludes a complete analytical 
description of the actual transition process, let alone the fully-turbulent 
state. For a real (i.e., viscous) fluid, mathematically speaking, the instabil
ities result mainly2 from interaction between the Navier-Stokes equation's  
nonlinear inertial terms and viscous terms. The interaction is very complex 
because it is rotational, fully three dimensional and time dependent. 

As an overview, the nonlinearity of the Navier-Stokes equation leads to 
interactions between fluctuations of differing wavelengths and directions. 
As discussed below, the wavelengths of the motion usually extend all the 
way from a maximum comparable to the width of the flow to a minimum 
fixed by viscous dissipation of energy.. The main physical process that 
spreads the motion over a wide range of wavelengths is vortex stretching. 
The turbulence gains energy if the vortex elements are primarily oriented 
in a direction in which the mean velocity gradients can stretch them. Most 
importantly, wavelengths that are not too small compared to the mean
flow width interact most strongly with the mean flow. Consequently, the 
larger-scale turbulent motion carries most of the energy and is mainly 
responsible for the enhanced diffusivity and attending stresses. In turn, 
the larger eddies randomly stretch the vortex elements that comprise the .J" 
smaller eddies, cascading energy to them. Energy is dissipated by viscosity 
in the shortest wavelengths, although the rate of dissipation of energy is 
set by the long-wavelength motion at the start of the cascade. The shortest 
wavelengths simply adjust accordingly. 

• Statistical Aspects. The time-dependent nature of turbulence also con
tributes to its intractability. The additional complexity goes beyond the 
introduction of an additional dimension. Turbulence is characterized by 

2Inviscid instabilities, such as the Kelvin-Helmholtz instability, also play a role. 
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random fluctuations thus mandating the use of statistical methods to an
alyze it. On the one hand, this aspect is not really a problem from the 
engineer's viewpoint. Even if we had a complete time history of a turbu
lent flow, we would usually integrate the flow properties of interest over 
time to extract time averages, or mean values. On the other hand, as 
we will see in Chapter 2, time-averaging operations lead to terms in the 
equations of motion that cannot be deteunined a priori . 

., 

• Thrbulence is a Continuum Phenomenon. In principle, we know that the 
time-dependent, three-dimensional continuity and Navier-Stokes equations 
contain all of the physics of a given turbulent flow. That this is true follows 
from the fact that turbulence is a continuum phenomenon. As noted by 
Tennekes and Lumley ( 1 983), 

"Even the smallest scales occurring in a turbulent flow are 
ordinarily far larger than any molecular length scale. " 

Nevertheless, the smallest scales of turbulence are still extremely small 
-

(we will see just how small in the next subsection). They are generally 
many orders of magnitude smaller than the largest scales of turbulence, the 
latter often being of the same order of magnitude as the dimension of the 
object about which the fluid is flowing. Furthermore, the ratio of smallest 
to largest scales decreases rapidly as the Reynolds number increases. To 
make an accurate numerical simulation (i.e., a fully time-dependent three
dimensional solution) of a turbulent flow, all physically relevant scales 
must be resolved. 

While more and more progress is being made with such simulations, com
puters of the early twenty-first century have insufficient memory and speed 
to solve any turbulent-flow problem of practical interest. To underscore the 
magnitude of the problem, Speziale ( 1 985) notes that a numerical simula
tion of turbulent pipe flow at a Reynolds number of 500,000 would require 
a computer 1 0  million times faster than a Cray Y/MP. While standard per
sonal computers are comparable in speed to a vintage 1985 Cray Y IMP, 
modem mainframe computers are still confined to simple geometries at 
low Reynolds numbers. This is true because, as discussed in Chapter 8, 
the number of numerical operations in such a computation is proportional 
to Re914, where Re is a characteristic Reynolds number. However, the 
results are very useful in developing and testing approximate methods. 

• Vortex Stretching. The strongly rotational nature of turbulence goes 
hand-in-hand with its three dimensionality. The vorticity in a turbulent 
flow is itself three dimensional so that vortex lines in the flow are non
parallel . The resulting vigorous stretching of vortex lines maintains the 
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Figure 1.3: Schematic of large eddies in a turbulent boundary layer. The flow 
above the boundary layer has a steady velocity U; the eddies move at randomly
fluctuating velocities of the order of a tenth of U. The largest eddy size (£) is 
comparable to the boundary-layer thickness (8). The interface and the flow 
above the boundary is quite sharp [Corrsin and Kistler (1954)]. 

ever-present fluctuating vorticity in a turbulent flow. Vortex stretching is 

absent in two-dimensional flows so that turbulence must be three dimen

sional. This inherent three dimensionality means there are no satisfactory 
two-dimensional approximations for determining fine details of turbulent 

flows. This is true even when the average motion is two dimensional. The 

induced velocity field attending these skewed vortex lines further increases 

three dimensionality and, at all but very low Reynolds numbers, the vor

ticity is drawn out into a tangle of thin tubes or sheets. Therefore, most 
of the vorticity in a turbulent flow resides in the smallest eddies. 

• Turbulence Scales and the Cascade. Turbulence consists of a continuous 

spectrum of scales ranging from largest to smallest, as opposed to a dis
crete set of scales. In order to visualize a turbulent flow with a spectrum of 

scales we often cast the discussion in terms of eddies. As noted above, a 

turbulent eddy can be thought of as a local swirling motion whose charac

teristic dimensitm is the local turbulence scale (Figure 1.3). Alternatively, 

from a more mathematical point of view, we sometimes speak in terms of 
wavelengths. When we think in terms of wavelength, we imagine we have 

done a Fourier analysis of the fluctuating flow properties. 

We observe that eddies overlap in space, large ones carrying smaller ones. 

Turbulence features a cascade process whereby, as the turbulence decays, 

its kinetic energy transfers from larger eddies to smaller eddies. Ultimately, 

the smallest eddies dissipate into heat through the action of molecular 

viscosity. Thus, we observe that, like any viscous flow, turbulent flows 
are always dissipative. 
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Figure 1 .4: Laser-induced fluorescence image of an incompressible turbulent 
boundary layer. Flow is from left to right and has been visualized with disodium 
fluorescein dye in water. Reynolds number based on momentum thickness is 700. 
[From C. Delo Used with permission.] 

• Large Eddies and Turbulent Mixing. An especially striking feature of 
a turbulent flow is the way large eddies migrate across the flow, carrying 
smaller-scale disturbances with them. The arrival of these large eddies 
near the interface between the turbulent region. and non turbulent fluid dis
torts the interface into a highly convoluted shape (Figures 1 .3 and 1 .4) . 
In addition to migrating across the flow, they have a lifetime so long that 
they persist for distances as much as 30 times the width of the flow [Brad
shaw ( 1 9 72)] . Hence, the state of a turbulent flow at a given position 
depends upon upstream history and cannot be uniquely specified in 
terms of the local strain-rate tensor as in laminar flow. 

• Enhanced Diffusivity. Perhaps the most important feature of turbulence 
from an engineering point of view is its enhanced diffusivity. Turbulent 
diffusion greatly enhances the transfer of mass, momentum and energy. 
Apparent stresses in turbulent flows are often several orders of magnitude 
larger than in corresponding laminar flows. 

In summary, turbulence is dominated by the large, energy-bearing, eddies. 
The large eddies are primarily responsible for the enhanced diffusivity and 
stresses observed in turbulent flows. Because large eddies persist for long dis
tances, the diffusivity and stresses are dependent upon flow history, and cannot 
necessarily be expressed as functions of local flow properties. Also, while the 
small eddies ultimately dissipate turbulence energy through viscous action, the 
rate at which they dissipate is controlled by the rate at which they receive energy 
from the largest eddies. These observations must play an important role in the 
formulation of any rational turbulence model. As we progress through the fol
lowing chapters, we will introduce more specific details of turbulence properties 
for common flows on an as-needed basis. 
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1.3.3 The S Scales of Turbulence 

As stated in the preceding subsection, we regard turbulence as a continuum 
phenomenon because the smallest scales of turbulence are much larger than any 
molecular length scale. \Ve can estimate the magnitude of the smallest scales by 
appealing to dimensional analysis, and thereby confirm this claim. Of course, to 
establish the relevant dimensional quantities, we must first consider the physics 
of turbulence at very small length scales. 

We begin by noting that the cascade process present in all turbulent flows 
involves a transfer of turbulence kinetic energy (per unit mass), k, from larger 
eddies to smaller eddies. Dissipation of kinetic energy to heat through the action 
of molecular viscosity occurs at the scale of the smallest eddies. Because small
scale motion tends to occur on a short time scale, we can reasonably assume that 
such motion is independent of the relatively slow dynamics of the large eddies 
and of the mean flow. Hence. the smaller eddies should be in a state where the • 

rate of receiving energy from the larger eddies is very nearly equal to the rate 
at which the smallest eddies dissipate the energy to heat. This is one of the 
premises of Kolmogorov's ( 1 94 1 )  universal equilibrium theory. Hence, the 
motion at the smallest sc::tles should depend only upon: (a) the rate at which the 
larger eddies supply energy, E -dk / dt, and (b) the kinematic viscosity, v. 

Having established E (whose dimensions are length2/time3) and v (whose 
dimensions are length2/time) as the appropriate dimensional quantities, it is a 
simple matter to form the fol!owing length (17), time (r) and velocity (v) scales. 

( 1 . 1 )  

These are the Kolmogorov scales of length, time and velocity. 

Figure 1 .5: Andrei Nikolaevich Kolmogorov (1 903-198 7), whose classic 1941 
paper on the universal equilibrium theory of turbulence provided an early foun
dation for an understanding of turbulent fluid motion 
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To appreciate how small the Kolmogorov length scale is, for example, es
timates based on properties of typical turbulent boundary layers indicate the 
following. For an automobile moving at 65 mph, the Kolmogorov length scale 
near the driver's window is about ry � 1.8 · w-4 inch. Also, on a day when the 
temperature is 68° F, the mean free path of air, i.e., the average distance traveled 
by a molecule between collisions, is l!rnfp � 2.5 · w-6 inch. Therefore, 

1] � 72 
l!rnfp 

( 1 .2) 

so that the Kolmogorov length is indeed much larger than the mean free path of 
air, which, in tum, is typically 1 0  times the molecular diameter. 

1.3.4 Spectral Representation and the Kolmogorov -5/3 Law 

To provide further insight into the description of turbulence presented above, 
it is worthwhile to cast the discussion in a bit more quantitative form. Since 
turbulence contains a continuous spectrum of scales, it is often convenient to do 
our analysis in terms of the spectral distribution of energy. In general, a spectral 
representation is a Fourier decomposition into wavenumbers, K, or, equivalently, 
wavelengths, ,\ -- 21r / K While this text, by design, makes only modest use of 
Fourier-transfonn methods, there are a few interesting observations we can make 
now without considering all of the complexities involved in the mathematics of 
Fourier transfonns. In the present context, we think of the reciprocal of"" as the 
eddy size. 

If E(K)dK is the turbulence kinetic energy contained between wavenumbers 
"" and "" + dK, we can say 

00 

k= ( 1 .3)  
0 

Recall that k is the kinetic energy per unit mass of the fluctuating turbulent 
velocity. Correspondingly, the energy spectral density or energy spectrum 
function, E(K), is related to the Fourier transform of k. 

Observing that turbulence is so strongly driven by the large eddies, we expect 
E( K) to be a function of a length characteristic of the larger eddies, 1!, and the 
mean strain rate, S, which feeds the turbulence through direct interaction of 
the mean flow and the large eddies. Additionally, since turbulence is always 
dissipative, we expect E(K) to depend upon v and E. By definition, it also must 
depend upon K. For high Reynolds number turbulence, dimensional analysis 
suggests, and measurements confirm, that k can be expressed in terms of E and 
I! according to [Taylor ( 1935)] 

E"-' 
k3/2 

I! 
( 1 .4) 

' 
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Although we have not yet quantified the length scale £, it is the primary 
length scale most turbulence models are based on. In our discussion of two
point correlations in Chapter 2, an alternative to the spectral representation of 
turbulence, we will find that one measure of £ is known as the integral length 
scale. In most turbulence-modeling analysis, we assume there is a wide sepa
ration of scales, which means we implicitly assume £ is very large compared to 
the Kolmogorov length scale, viz., 

( 1 .5) 

Substituting the estimate of E from Equation ( 1 .4) into the Kolmogorov length 
scale, we find 

where 
l/ 

( 1 .6) 

The quantity ReT is the turbulence Reynolds number. It is based on the 
velocity characteristic of the turbulent motions as represented by the square root 
of k, the turbulence length scale, £, and the kinematic viscosity of the fluid, 
Z/. Thus, the condition £ » fJ holds provided we have high Reynolds number 
turbulence in the sense that 

( 1 .7) 

The existence of a wide separation of scales is a central assumption Kol
mogorov made as part of his universal equilibrium theory. That is, he hypothe
sized that for very large Reynolds number, there is a range of eddy sizes between 
the largest and smallest for which the cascade process is independent of the 
statistics of the energy-containing eddies (so that S and £ can be ignored) and 
of the direct effects of molecular viscosity (so that v can be ignored) . The idea 
is that a range of wavenumbers exists in which the energy transferred by inertial 
effects dominates, wherefore E(K) depends only upon E and K. On dimensional 
grounds, he thus concluded that 

1 1 
-«K«£ fJ 

( 1 .8) 

where C K is the Kolmogorov constant. Because inertial transfer of energy 
dominates, Kolmogorov identified this range of wavenumbers as the inertial 
subrange. The existence of the inertial subrange has been verified by many ex
periments and numerical simulations, although many years passed before defini
tive data were available to confirm its existence. Figure 1 .6 shows a typical 
energy spectrum for a turbulent flow. 

While Equation ( 1 .8) is indeed consistent with measurements, it is not the 
only form that can be deduced from dimensional analysis. Unfortunately, this 
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is one of the shortcomings of dimensional analysis, i.e., the results we obtain 
are rarely unique. For example, lacking Kolmogorov' s  physical intuition, some 
researchers would retain v as a dimensional quantity upon which E(K) depends 
as well as E and ""· Then, a perfectly valid alternative to Equation ( 1 .8) is 

E(K) El/4v5/4j(K'rJ), rJ (v3 /t)l/4 ( 1 .9) 

where j(KrJ) is an undetermined function. This form reveals nothing regarding 
the variation of E( ,_,) with K, which is a straightforward illustration of how 
dimensional analysis, although helpful, is insufficient to deduce physical laws. 

Afzal and Narasimha ( 1976) use the more-powerful concepts from perturba
tion theory (Appendix B) to remove this ambiguity and determine the asymptotic 
variation of the function f in the inertial subrange. In their analysis, they assume 
that for small scales, corresponding to large wavenumbers, the energy spectrum 
function is given by Equation ( 1 .9). This represents the inner solution. 

Afzal and N arasimha also assume that viscous effects are unimportant for 
the largest eddies, and that if the only relevant scales are k and f., the energy 
spectrum function is given by 

( 1 . 10) 

where k is the turbulence kinetic energy, f is the large-eddy length scale discussed 
above, and g( Kf) is a second undetermined function. Although we omit the 
details here for the sake of brevity, we can exclude explicit dependence of E(K) 
on strain rate, S, since it is proportional to k112 / f for high Reynolds number 
boundary layers. This represents the outer solution. 
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Finally, they match the two solutions, which means they insist that the inner 
and outer solutions are identical when KX/ is small and td is large, i.e., 

for K1J « 1 and Kf » 1 ( 1 . 1 1) 

In words, this matching operation assumes that 

"Between the viscous and the energetic scales in any turbulent flow 
exists an overlap domain over which the solutions [characterizing] 
the flow in the two corresponding limits must match as Reynolds 
number tends to infinity. " 

The qualification regarding Reynolds number means it must be large enough to 
permit a wide separation of scales so that .e » 1J. To complete the matching 
operation, Afzal and Narasimha proceed as follows. In the spirit of singular
perturbation theory, the matching operation presumes that the functional forms 
of the inner and outer solutions are the same in the overlap region. This is a 
much stronger condition than requiring the two solutions to have the same value 
at a given point. Hence, if their functional forms are the same, so are their first 
derivatives. Differentiating both sides of Equation ( 1 . 1 1 ) with respect to "' gives 

for K1J « 1 and Kf » 1 ( 1 . 1 2) 

Then, noting that the Kolmogorov length scale is 17 v314t: - 1 /4 while Equa-
tion ( 1 .4) tells us k t:2/3.e2/3, we can rewrite Equation ( 1 . 1 2) as 

for K1J « 1 and Kf » 1 ( 1 . 1 3) 

Finally, multiplying through by K8/3t:--2/3 and using the fact that v2c2/3 178/3, 
we arrive at the following equation. 

for K1J « 1 and Kf » 1 ( 1 . 14) 

If there is a wide separation of scales, we can regard K1J and Kf as separate inde
pendent variables. Thus, Equation ( 1 . 14) says that a function of one independent 
variable, K1J, is equal to a function of a different independent variable, Kf. This 
can be true only if b�th functions tend to a constant value in the indicated limits. 
Thus, in the Afzal-Narasimha overlap domain, which is the inertial subrange, 

( 1 . 1 5) 

where CK is a constant. Combining Equations ( 1 .9) and ( 1 . 1 5), we again arrive 
at the Kolmogorov inertial-subrange relation, viz., 

E(K) CK t2/3/'i,-5/3 ( 1 . 1 6) 

which is identical to Equation ( 1 .8). 
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Although the Kolmogorov -5l3 law is of minimal use in conventional turbu
lence models, it is of central importance in work on Direct Numerical Simulation 
(DNS), Large Eddy Simulation (LES), and Detached Eddy Simulation (DES), 
which we discuss in Chapter 8. The Kolmogorov -513 law is so well es
tablished that, as noted by Rogallo and Moin ( 1 984), theoretical or numerical 
predictions are regarded with skepticism if they fail to reproduce it. Its standing 
is as important as the law of the wall, which we discuss in the next subsection. 

1.3.5 The Law of the Wall 

The law of the wall is one of the most famous empirically-determined rela
tionships in turbulent flows near solid boundaries. Measurements show that, for 
both internal and external flows, the streamwise velocity in the flow near the wall 
varies logarithmically with distance from the surface. This behavior is known 
as the Jaw of the wall. In this section, we use both dimensional analysis and 
matching arguments to infer this logarithmic variation. 

Observation of high Reynolds number turbulent boundary layers reveals a 
useful, approximate description of the near-surface turbulence statistics. We find 
that effects of the fluid's inertia and the pressure gradient are small near the 
surface. Consequently, the statistics of the flow near the surface in a turbulent 
boundary layer are established by two primary mechanisms. The first is the rate 
at which momentum is transferred to the surface, per unit area per unit time, 
which is equal to the local shear stress, r. The second is molecular diffusion of 
momentum, which plays an important role very close to the surface. Observations 
also indicate that the details of the eddies farther from the surface are of little 
importance to the near-wall flow statistics. 

The validity of this approximate description improves with decreasing y I 8, 
where 8 is the boundary-layer thickness. This is true because the ratio of typical 
eddy size far from the surface to eddy size close to the surface increases as y I 8 
decreases. In other words, since 8 increases with Reynolds number, we find 
a wide separation of scales at high Re)'nolds numbers. The astute reader will 
note interesting parallels between this description of the turbulent boundary layer 
and the general description of turbulence presented in Subsection 1 .3 .2.  Note, 
however, that the analogy is mathematical rather than physical. This analogy is 
discussed, for example, by Mellor ( 1972) and by Afzal and Narasimha ( 1 976). 

Although r varies near the surface, the variation with distance from the 
surface, y, is fairly slow. Hence, for the dimensional-analysis arguments to 
follow, we can use the surface shear stress, r w , in place of the local shear stress. 
Also, we denote the molecular viscosity of the fluid by f.-t· Since turbulence 
behaves the same in gases as in liquids, it is reasonable to begin with r w I p and 
kinematic viscosity, v J.-tl p, as our primary dimensional quantities, effectively 
eliminating fluid density, p, as a primary dimensional quantity. 
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Since the dimensions of the quantity Tw/ p are length2/time2, while those of 
v are length2/time, clearly we can derive a velocity scale, Ur. defined by 

( 1 . 1 7) 
p 

and a length scale, v fur. The quantity Ur is known as the friction velocity, 
and is a velocity scale representative of velocities close to a solid boundary. If 
we now postulate that the mean velocity gradient, au 1 oy, can be correlated as 
a function of Ur, v fur and y, dimensional analysis yields 

( 1 . 1 8) 

where F(uryfv) is presumed to be a universal function. Examination of exper
imental data for a wide range of boundary layers [see, for example, Coles and 
Hirst ( 1 969)] , indicates that, as a good leading-order approximation, 

as 00 ( 1 . 1 9) 

where K is Karman's constant. The function F(uryfv) approaching a constant 
value is consistent with the notion that viscous effects cease to matter far from 
the surface, i.e., if it varies with uryfv it would thus depend upon v. Integrating 
over y, we arrive at the famous law of the wall, viz., 

u 
( 1 .20) 

where C is a dimensionless integration constant. Correlation of measurements 
indicate C � 5 .0  for smooth surfaces and "" � 0.41  for smooth and rough 
surfaces [see Kline et al . ( 1 969)] . 

Figure 1 .  7 shows a typical velocity profile for a turbulent boundary layer. 
The graph displays the dimensionless velocity, u+, and distance, y+ , defined as: 

and ( 1 .2 1 )  

The velocity profile matches the law of the wall for values of y+ in excess of 
about 30. As Reynolds number increases, the maximum value of y+ at which 
the law of the wall closely matches the actual velocity increases. 

Observe that three distinct regions are discernible, viz., the viscous sublayer, 
the log layer and the defect layer. By definition, the log layer is the portion 
of the boundary layer where the sublayer and defect layer merge and the law of 
the wall accurately represents the velocity. It is not a distinct layer. Rather, it is 
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Figure 1 .7 :  Typical velocity profile for a turbulent boundary layer. · 

an overlap region between the inner and outer parts of the boundary layer. As 
we will see in the following discussion, originally presented by Millikan ( 1 93 8), 
it is an overlap domain similar to that of the Afzal-Narasimha analysis of the 
preceding subsection. 

Assuming the velocity in the viscous sublayer should depend only upon U7 , 
v and y, we expect to have a relationship of the form 

( 1 .22) 

where f(y+ ) is  a dimensionless function. This general functional form is often 
referred to as the law of the wall, and Equation ( 1 .20) is simply a more explicit 
form. By contrast, in the defect layer, numerous experimenters including Darcy, 
von K<\rman and Clauser found that velocity data correlate reasonably well with 
the so-called velocity-defect law or Clauser defect law: 

( 1 .23) 

where Ue is the velocity at the boundary-layer edge and g(ry) is another dimen
sionless function. The quantity � is a thickness characteristic of the outer portion 
of the boundary layer. 
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Hence, we have an inner length scale v fur and an outer length scale �.  
Millikan's postulate is that if a wide separation of scales exists in the sense that 

( 1 .24) 

then an overlap domain exists such that 

for y+ » 1 and rt � 1 ( 1 .25) 

We can complete the matching without explicit knowledge of the functions f 
and g by differentiating Equation ( 1 .25) with respect to y. Hence, 

Ur ' ( ) - g "' � 
for y+ » 1 and rt � 1 

Then, multiplying through by y / u.,., we find 

for y+ » 1 and 17 � 1 

( 1 .26) 

( 1 .27) 

Thus, since a wide separation of scales means we can regard y+ and 17 as 
independent variables, clearly the only way a function of y+ can be equal to a 
function of rt is for both to be equal to a constant. Therefore, 

1 + 1 . constant -- - - ;, f(y ) = -fnu+ + C 
� K � 

which, when combined with Equation (1 .22), yields Equation ( 1 .20). 

( 1 .28) 

As noted earlier, the value of C for a perfectly-smooth surface is C � 5.0. 
For surfaces with roughness elements of average height k8, the law of the wall 
still holds, although C is a function of k8 • Figure 1 .8 illustrates how C varies 
as a function of the dimensionless roughness height given by 

( 1 .29) 

As shown, as k8 increases, the value of C decreases. For large roughness height, 
measurements of Nikuradse [Schlichting-Gersten ( 1 999)] show that 

1 + C ---+ 8.0 - - £nk8 , 
� 

( 1 .30) 

Substituting this value of C into the law of the wall as represented in Equa
tion (1.20) yields: 

u 1 y 
- = -fn + 8.0 Ur � ks (completely-rough wall) ( 1 .3 1 )  
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Figure 1 .8 :  Constant in the law of the wall, C, as a function of surface roughness; 
o based on measurements of Nikuradse [Schlichting-Gersten (1999)]. 

The absence of viscosity in this equation is consistent with the notion that the 
surface "shear stress" is due to pressure drag on the roughness elements. 

The defect layer lies between the log layer and the edge of the boundary 
layer. The velocity asymptotes to the law of the wall as y /8 0, and makes 
a noticeable depa1 lure from logarithmic behavior approaching the freestream. 
Again, from correlation of measurements, the velocity behaves as 

+ 1 + . 2II . 2 1r y \ U = -fny + C +  sm - -r} K K 2 u 
( 1 .32) 

where II is Coles' wake-strength parameter [Coles and Hirst ( 1 969)] and 8 
is boundary-layer thickness. It varies with pressure gradient, and for constant 
pressure, correlation of measurements suggests II �  0.6. Equation ( 1 .32) is often 
referred to as the composite law of the wall and law of the wake profile. 

As demonstrated by Clauser ( 1 956) experimentally and justified with per
turbation methods by others analytically [see, for example, Kevorkian and Cole 
( 1 9 8 1 ), Van Dyke ( 1 975) or Wilcox ( 1 995a)], the velocity in the defect layer 
varies in a self-similar manner provided the equilibrium parameter defined by 

o* dP 
f3r = 

d Tw X 
( 1 .33) 

is constant. The quantities o* and P in Equation ( 1 .33) are displacement thick
ness and mean pressure, respectively. As demonstrated by Wilcox (1 993b), even 
when f3r is not constant, if it is not changing too rapidly, the value for IT is close 
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Figure 1 .9 :  Coles ' wake-strength parameter, IT, as a function of pressure gradi
ent; o from data of Coles and Hirst (1969); • Skare and Krogstad (1994). 

to the value corresponding to the local value of f3r · Figure 1 .9 shows how II 
varies with pressure gradient for the so-called equilibrium turbulent boundary 
layer, i .e., a boundary layer for which f3r is constant. 

1.3.6 Power Laws 

Often, as an approximation, turbulent boundary-layer profiles are represented by 
a power-law relationship. That is, we sometimes say 

u y l/n 
-Ue 6 ( 1 .34) 

where n is typically an integer between 6 and 8. A value of n 7, first suggested 
by Prandtl [Schlichting-Gersten ( 1 999)], yields a good approximation at high 
Reynolds number for the flat-plate boundary layer. Figure 1 . 1 0 compares a 1/7 
power-law profile with measurements. The agreement between measured values 
for a plate-length Reynolds number of RPx 1 . 09 · 107 and the approximate 
profile is surprisingly good with differences everywhere less than 3%. 

Recently, Barenblatt and others [see, for example, Barenblatt ( 1 99 1  ), George, 
Knecht and Castillo ( 1 992), Barenblatt ( 1 993) and Barenblatt, Chorin and Pros
tokishin ( 1 997)] have challenged the validity of the law of the wall. Their 
contention is that a power-law variation of the velocity in the inner layer better 
correlates pipe-flow measurements and represents a more realistic description of 
the turbulence in a boundary layer. 

The critical assumption that Barenblatt et al. challenge is the existence of a 
wide separation of scales, i .e., large 6 I (vI Ur) .  They maintain that the turbulence 
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in the overlap region is Reynold8-number dependent. If this is true, the law of the 
wall and defect-law Equations ( 1 .22) and ( 1 .23), respectively, must be replaced 
by 

u urf (y+ , Re) and u ( 1 .35) 

8y ( 1 .36) 

where the universal function <P(y+ , Re) appears in place of F(y+ ) .  
In the Millikan argument, the assumption of a wide separation of scales im

plies that the boundary layer possesses self-similar solutions both in the defect 
layer and the sublayer, in the sense that a similarity variable, e.g., y+ 'u7ylv 
and rJ y I�, exists in each region. The assumption that we can regard y+ and 
'TJ as distinct independent variables in the overlap region is described as a condi
tion of complete similarity. By contrast, the Barenblatt hypothesis corresponds 
to in�omplete similarity. Barenblatt ( 1 979) discusses the distinction between 
complete and incomplete similarity in detail. 

Under the assumption of incomplete similarity, there is no a priori reason for 
the function <J?(y+ , Re) to approach a constant value in the limit y+ oo ,  even 
when Re oo .  Rather, Barenblatt et al. argue that for large y+ , 

( 1 .37) 

where the coefficient A and the exponent a are presumed to be functions of 
Reynolds number. In the nomenclature of Barenblatt, Chorin and Prostokishin 
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( 1 997), they assume "incomplete similarity in the parameter [y+] and no simi
larity in the parameter Re." Combining Equations ( 1 .36) and ( 1 .37) yields 

ay+ 
- :· u+ = -

0: 
( 1 .38) 

Based primarily on experimental data for pipe flow gathered by Nikuradse in 
the 1 930's  [Schlichting-Gersten ( 1 999)], Barenblatt, Chorin and Prostokishin 
conclude that 

and 1 .5 
CnRe 

( 1 .39) 

where Re is Reynolds number based on average velocity and pipe diameter. 

To test the Barenblatt et al . alternative to the law of the wall, Zagarola, Perry 
and Smits ( 1 997) have performed an analysis based on more recent experiments 
by Zagarola ( 1 996). The advantage of these data lies in the much wider range 
of Reynolds numbers considered, especially large values, relative to those con
sidered by Nikuradse. They conclude that the classical la'"'' of the wall provides 
closer correlation with measurements than the power law given by combining 
Equations ( 1 .38) and ( 1 .39), although they recommend a somewhat larger value 
for K, of 0.44. 

To remove the possibility that the 60-year-old data of Nikuradse provide a 
poor correlation of A and o: ,  Zagarola, Perr; and Smits determine their values 
from the Zagarola data, concluding that 

A -- 0 .7053£nRe + 0.3055 and 1 .085 6. 535 
= -:--=- + -:-:--=--:-:::-

CnRe (fnRe)2 
( 1 .40) 

Even with these presumably more-accurate values, the logarithmic law of the wall 
still provides closer correlation with measurements than the power-law form. 

This prompted Barenblatt, Chorin and Prostokishin ( 1 997) - with a ques
tionable argument to demonstrate that at high Reynolds number the Zagarola 
experiments have significant surface roughness. Zagarola, Perry and Smits ( 1 997) 
reject this possibility in stating that "the pipe surface was shown to be smooth." 

Buschmann and Gad-el-Hak (2003) have offered what may be the final chap
ter of the power-law saga. They have performed an extensive analysis of mean
velocity profiles to determine if the power-law or the classical law-of-the-wall 
formulation provides optimum correlation of measurements. Their profiles in
clude five sets of measurements and one data set from a Direct Numerical Sim
ulation. After a detailed statistical analysis, they conclude that "the examined 
data do not indicate any statistically significant preference toward either law." 
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The primary emphasis in this book is upon the time-averaged Navier-Stokes 
equation. The origin of this approach dates back to the end of the nineteenth 
century when Reynolds ( 1 895) published results of his research on turbulence. 
His pioneering work proved to have such profound importance for all future 
developments that we refer to the standard time-averaging process as one type 
of Reynolds averaging. 

· 

The earliest attempts at developing a mathematical description of turbulent 
stresses sought to mimic the molecular gradient-diffusion process. In this spirit, 
Boussinesq ( 1 877) introduced the concept of a so-called eddy viscosity. As 
with Reynolds, Boussinesq has been immortalized in turbulence literature. The 
Boussinesq eddy-viscosity approximation is so widely known that few authors 
find a need to reference his original paper. 

Neither Reynolds nor Boussinesq attempted a solution of the Reynolds
averaged Navier-Stokes equation in any systematic manner. Much of the physics 
of viscous flows was a mystery in the nineteenth century, and further progress 
awaited Prandtl '  s discovery of the boundary layer in 1 904. Focusing upon turbu
lent flows, Prandtl ( 1 925) introduced the mixing length (an analog of the mean
free path of a gas) and a straightforward prescription for computing the eddy 
viscosity in tetms of the mixing length. The mixing-length hypothesis, closely 
related to the eddy-viscosity concept, formed the basis of virtually all turbulence
modeling research for the next twenty years. Important early contributions were 
made by several researchers, most notably by von Karman ( 1 930). In modern 
terminology, we refer to a model based on the mixing-length hypothesis as an 
algebraic model or a zero-equation model of turbulence. By definition, an 
n-equation model signifies a model that requires solution of n additional differ
ential transport equations in addition to those expressing conservation of mass, 
momentum and energy for the mean flow. 

To improve the ability to predict properties of turbulent flows and to develop 
a more realistic mathematical description of the turbulent stresses, Prandtl ( 1 945) 
postulated a model in which the eddy viscosity depends upon the kinetic energy of 
the turbulent fluctuations, k. He proposed a modeled partial-differential equation 
approximating the exact equation for k. This improvement, on a conceptual level, 
takes account of the fact that the turbulent stresses, and thus the eddy viscosity, 
are affected by where the flow has been, i.e., upon flow history. Thus was born 
the concept of the so-called one-equation model of turbulence. 

While having an eddy viscosity that depends upon flow history provides a 
more physically realistic model, the need to specify a turbulence length scale 
remains. That is, on dimensional grounds, viscosity has dimensions of velocity 
times length. Since the length scale can be thought of as a characteristic eddy 
size and since such scales are different for each flow, turbulence models that do 
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not provide a length scale are incomplete. That is, we must know something 
about the flow, other than initial and boundary conditions, in advance in order 
to obtain a solution. Incomplete models are not without merit and, in fact, have 
proven to be of great value in many engineering applications. 

To elaborate a bit further, an incomplete model generally defines a turbulence 
length scale in a prescribed manner from the mean flow, e.g., the displacement 
thickness, 8*, for an attached boundary layer. However, a different length scale 
in this example would be needed when the boundary layer separates since 8* 
may be negative. Yet another length might be needed for free shear flows, 
etc. In essence, incomplete models usually define quantities that may vary more 
simply or more slowly than the Reynolds stresses (e.g., eddy viscosity and mixing 
length) . Presumably, such quantities would prove to be easier to correlate than 
the actual stresses. 

A particularly desirable type of turbulence model would be one that can be 
applied to a given turbulent flow by prescribing at most the appropriate boundary 
and/or initial conditions. Ideally, no advance knowledge of any property of the 
turbulence should be required to obtain a solution. We define such a model as 
being complete. Note that our definition implies nothing regarding the accuracy 
or universality of the model, only that it can be used to determine a flow with 
no prior knowledge of any flow details. 

Kolmogorov ( 1 942) introduced the first complete model of turbulence. In 
addition to having a modeled equation for k, he introduced a second parameter w 
that he referred to as "the rate of dissipation of energy in unit volume and time." 
The reciprocal of w serves as a turbulence time scale, while k112 jw serves as the 
analog of the mixing length and kw is the analog of the dissipation rate, E .  In 
this model, known as a k-w model, w satisfies a differential equation somewhat 
similar to the equation for k. The model is thus termed a two-equation model 
of turbulence. While this model offered great promise, it went with virtually 
no applications for the next quarter century because of the unavailability of 
computers to solve its nonlinear differential equations. 

Chou ( 1 945) and Rotta ( 1 95 1 )  laid the foundation for turbulence models that 
obviate use of the Boussinesq approximation. Rotta devised a plausible model 
for the differential equation governing evolution of the tensor that represents 
the turbulent stresses, i .e., the Reynolds-stress tensor. Such models are most 
appropriately described as stress-transport models. Many authors refer to this 
approach as second-order closure or second-moment closure. The primary 
conceptual advantage of a stress-transport model is the natural manner in which 
nonlocal and history effects are incorporated. 

Although quantitative accuracy often remains difficult to achieve, such mod
els automatically accommodate complicating effects such as sudden changes in 
strain rate, streamline curvature, rigid-body rotation, and body forces. This stands 
in distinct contrast to eddy-viscosity models that account for these effects only if 
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empirical tetms are added. For a three-dimensional flow, a stress-transport model 
introduces seven equations, one for the turbulence (length or equivalent) scale 
and six for the components of the Reynolds-stress tensor. As with Kolmogorov's 
k-w model, stress-transport models awaited adequate computer resources. 

Thus, by the early 1 950's, four main categories of turbulence models had 
evolved, viz., 

1 .  Algebraic (Zero-Equation) Models 

2. One-Equation Models 

3.  Two-Equation Models 

4. Stress-Transport Models 

With the coming of the age of computers since the 1 960's, further devel
opment of all four classes of turbulence models has occurred. The following 
overview lists a few of the most important modem developments for each of the 
four classes. 

Algebraic Models. Van Driest ( 1 956) devised a viscous damping correction 
for the mixing-length model that is included in virtually all algebraic models 
in use today. Cebeci and Smith ( 1 974) refined the eddy-viscosity/mixing-length 
model to a point that it can be used with great confidence for most attached 
boundary layers. To remove some of the difficulties in defining the turbulence 
length scale from the shear-layer thickness, Baldwin and Lomax ( 1 978) proposed 
an alternative algebraic model that enjoyed widespread use for many years. 

Figure 1 . 1 1 :  A. M 0. Smith (1911-1997), whose pioneering work in CFD and 
turbulence modeling were routine accomplishments in a brilliant career. 

One-Equation Models. Of the four types of turbulence models described 
above, the one-equation model has enjoyed the least popularity and success. 
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Perhaps the most successful early model of this type was formulated by Bradshaw, 
Ferriss and Atwell ( 1 967). In the 1 968 Stanford Conference on Computation of 
Turbulent Boundary Layers (Coles and Hirst ( 1 969)] the best turbulence models 
of the day were tested against the best experimental data of the day. In this 
author's opinion, of all the models used, the Bradshaw-Ferriss-Atwell model 
most faithfully reproduced measured flow properties. 

There has been renewed interest in one-equation models based on a postulated 
equation for eddy viscosity [c.f. Sekundov ( 1 97 1 ), Baldwin and Barth ( 1 990), 
Goldberg ( 1 99 1 ), Spalart and Allmaras ( 1 992) and Menter ( 1 994)] .  This work 
has been motivated primarily by the ease with which such model equations can be 
solved numerically, relative to two-equation models and stress-transport models. 
Of these recent one-equation models, that of Spalart and Allmaras appears to be 
the most accurate for practical turbulent-flow applications. 

Two-Equation Models. While Kolmogorov's k-w model was the first of this 
type, it remained in obscurity until the coming of the computer. By far the most 
extensive work on two-equation models has been done by Launder and Spalding 
( 1 972) and a continuing succession of students and colleagues. Launder's k-E 
model is as well known as the mixing-length model and, until the last decade 
of the twentieth century, was the most widely used two-equation model. Even 
the model 's  demonstrable inadequacy for flows with adverse pressure gradient 
[c.f. Rodi and Scheuerer ( 1 986), Wilcox ( 1988a, 1 993b) and Henkes ( 1 998a)] 
initially did little to discourage its widespread use. 

With no prior knowledge of Kolmogorov's work, Saffman ( 1 970) formulated 
a k-w model that enjoys advantages over the k-E model, especially for integrating 
through the viscous sublayer and for predicting effects of adverse pressure gra
dient. Wilcox and Alber ( 1 972), Saffman and Wilcox ( 1 974), Wilcox and Traci 
( 1 976) , Wilcox and Rubesin ( 1 980), Wilcox ( 1 988a, 1 998), Menter ( 1 992a), Kok 
(2000) and Hellsten (2005), for example, have pursued further development and 
application of k-w models. This text, in Chapter 4, introduces a new version 
of the k-w model, a significant improvement over that described in the first and 
second editions of this book. Lakshminarayana ( 1 986) observed that k-w models 
had become the second most widely used type of two-equation turbulence model 
even before the k-E model ' s  numerous inadequacies were widely known. 

Stress-Transport Models. By the 1 970's, sufficient computer resources 
became available to permit serious development of this class of model. The 
most noteworthy efforts were those of Donaldson [Donaldson and Rosenbaum 
( 1 968)] ,  Daly and Harlow ( 1 970) and Launder, Reece and Rodi ( 1 975). The 
latter evolved as the baseline stress-transport model despite its dependence on 
essentially the same flawed equation for E that plagues the k-E model. 

Chapter 6 describes a stress-transport model based on the w equation that 
greatly improves computational accuracy over that of the Launder-Reece-Rodi 
model . More recent contributions by Lumley (1 978), Speziale ( 1 985, 1 987a, 
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1 99 1 )  and Reynolds ( 1 987) have added mathematical rigor to the closure process. 
However, because of the large number of equations and complexity involved in 
stress-transport models, they have thus far found their way into a relatively small 
number of applications compared to algebraic and two-equation models. 

This book investigates all four classes of turbulence models. The primary 
emphasis is upon examining the underlying physical foundation and upon de
veloping the mathematical tools for analyzing and testing the models. The text 
is not intended to be a catalog of all turbulence models. Rather, the text 
approaches each class of models in a generic sense. Detailed information is 
provided for models that have stood the test of time; additionally, references are 
given for most models. 

As a concluding comment, turbulence models have been created that fall 
beyond the bounds of the four categories cited above. This is true because 
model developers have tried unconventional approaches in an attempt to remove 
deficiencies of existing models of the four basic classes. Given the erratic track 
record of most turbulence models, new ideas are always welcome . 

• 

• 
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Problems 

1 .1  To appreciate why laminar flow is of minimal importance in many engineering ap
plications, compute the percent of the vehicle over which laminar flow exists for the 
following situations.  In each case, let Xt denote arclength measured from the leading 
stagnation point of the vehicle or wing and assume transition occurs at a (very high) 
Reynolds number of Rext = 5 · 105 . 

(a) A 14-foot automobile moving at 75 mph (v = 1 .62 · w-4 ft2/sec). 

(b) A 14-foot automobile moving at 25 mph (v = 1 .62 · 10-4 ft2 /sec). 

(c) A small aircraft with an average wing chord length of 8 feet moving at 1 50 mph 
(v = 1 .58 . w-4 ft2 /sec). 

(d) A Boeing 747 with an average wing chord length of 30 feet moving at 550 mph 
(v = 4.25 . 10-4 ft2/sec). 

1.2 To appreciate why laminar flow is of minimal importance in many engineering ap
plications, compute the percent of the vehicle over which laminar flow exists for the 
following situations. In each case, let Xt denote arclength measured from the leading 
stagnation point of the vehicle or wing and assume transition occurs at a (very high) 
Reynolds number of Rext = 2 · 106 . Note that I knot = 0.5 14 m/sec. 

(a) A 10-meter sailboat moving at 3 .5 knots (v = 1 .00 · 10-6 m2/sec). 

(b) A 10-meter sailboat moving at 7.7 knots (v = 1 .00 · 10- 6 m2/sec). 

(c) A 30-meter yacht moving at 1 2  knots (v = 0.90 · w-- 6 m2/sec). 

(d) A 100-meter tanker moving at 1 6  knots (v = 1 .50 · w-6 m2/sec). 

1.3 Using dimensional analysis, deduce the Kolmogorov length, time and velocity scales 
defined in Equation ( 1 . 1 ). 

1 .4 Using dimensional analysis, deduce the Kolmogorov -5/3 law, Equation (1 .8), be
ginning with the assumption that the energy spectral density, E(K-), depends only upon 
wavenumber, "'· and dissipation rate, E .  

1 .5 As noted in Subsection 1 .3 .3 ,  for an automobile moving at 65 mph, the Kolmogorov 
length scale near the driver's window is TJ � 2 · w--4 inch. If v = 1 .60 · 10-4 ft2 /sec, 
what are the Kolmogorov time and velocity scales? Repeat the computations for a point 
farther from the surface where TJ = 0. 02 inch. 

1 .6 The viscous sublayer of a turbulent boundary layer extends from the surface up to 
y+ � 30. To appreciate how thin this layer is, consider the boundary layer on the side 
of your freshly washed and waxed (and therefore smooth) automobile. When you are 

moving at U = 55 mph, the skin friction coefficient, Cf, just below your rear-view mirror 
is 0.0028. Using the fact that 

U juT = 2/cJ 

estimate the sub layer thickness and compare it to the diameter of the head of a pin, which 
is dpin = 0.05 inch. Assume v = 1 . 68 · 10- 4 ft2 /sec. 



PROBLEMS 29 

1.7 The viscous sublayer of a turbulent boundary layer extends from the surface up to 
y+ � 30. To appreciate how thin this layer is, consider the boundary layer on the hull of 
a large tanker moving at speed U. Assuming the boundary layer has negligible pressure 
gradient over most of the hull, you can assume the boundary-layer thickness, 15, and skin 

friction, c f ,  are 

r5 � 0.37xRe; 115 

CJ � 0.0576Re; 115 

(a) Noting that Uju,. = 2/cJ , verify that the sublayer thickness, r5st = 30vju.,. , is 

given by 
478 

r5st � 
R 7/ 10 r5 

ex 

(b) Compute r5st at points on the hull where Rex = 2.8 · 107 and r5 = 2.5 in, and where 
Rex = 5.0 · 108 and 8 = 25 in. Express your answer in tenus of ho /6st ,  to the 
nearest integer, where ho = l / 10  inch is the height of the symbol r5st on this page. 

1.8 A surface is called hydraulically smooth when the surface roughness height, ks, is 

such that 

k"t = u.,.ks < 5 
l/ 

where u.,. is friction velocity and v is kinematic viscosity. Consider the flow of air over a 
flat plate of length 1 m. For the following plate materials, what is the maximum freestream 
velocity, U, at which the surface will be hydraulically smooth? Assume skin friction is 
given by CJ � 0.0576Re; 115 and that l/ = 1.51 . 10-5 m2/sec. 

Plate Material 

Copper 
Galvanized iron 
Concrete 

J ks (mm) I 
0.00 1 5  ., 

0. 1 5  
1 .50 

1.9 A surface is called completely rough when the surface roughness height, ks, is such 
that 

k"t = u.,.ks > 70 
l/ 

where 'U.,. is friction velocity and v is kinematic viscosity. Consider the flow of water over 
a flat plate. For the following plate materials, what is the minimum freestream velocity, 
U, at which the surface will be completely rough at x = 5 ft? Assume skin friction is 
given by CJ � 0.0576Re;115 and that l/ = 1.08 . 10-5 ft2/sec. 

Plate Material ks (ft) 

Steel 1 . 5  · w-
Cast iron 8 . 5  . w-4 
Concrete 5.0 . w-2 
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1.10 The atmospheric boundary layer over a smooth beach is a very large scale turbulent, 
flat-plate boundary layer, and its boundary-layer thickness and skin friction are accurately 
represented by 

6 � 0.37xRe;;; 115 and CJ � 0.0576Re;;; 115 

Suppose you are enjoying a day on the beach and the temperature is 85° F so that the 
kinematic molecular viscosity is v = 1 .  72 · 10-4 ft2 /sec. The atmospheric boundary layer 
is 250 ft thick and the velocity at that altitude is 20 mph. Your forehead is about 6 inches 
above the ground level. Is your forehead in the sublayer, log layer or defect layer? What 
is the wind velocity over your forehead? 

y 

X 
Problems 1.10, 1 . 1 1  

1 .11  Sunbathers are enjoying a day on the beach. They are lying on the sand with 
essentially uniform spacing, and their bodies resemble sandgrain roughness elements of 
height ks = 30 em to the atmospheric boundary layer. One of the sunbathers is an 
eager graduate student who decides to use what he learned in this chapter in a practical 
situation. First, j ust downstream of a cluster of sunbathers, he measures the wind velocity 
at head level, Yl � 1 .8 m, and finds u1 = 2.9 m/sec. He then climbs a palm tree of 
height Y2 � 5.0 m and observes a wind velocity of u2 = 3 .5  m/sec. Assuming the 
beach surface is a completely-rough surface, what is the friction velocity according to his 
measurements? To verify the hypothesis that the surface is completely rough, check to 
see if Ur ks /V > 70. Assume that v = 1 .60 . w-s m2/sec. 

1 .12 Combining Equations ( 1 .25) and ( 1 .28), verify that the function 9("7) must be 

1 9("7) = A - - Cn'fl 
/'\, 

where A is a function of Ue, ur, Ll, v, "' and C. To have a wide separation of scales, 

A. must be a col!.stant, i.e., it must be independent of Reynolds number. Noting that 
Ue/ur = 2/cJ and using Clauser's thickness, Ll = Ue6* /ur, where 8* is displace
ment thickness, detennine the skin friction, c f ,  as a function of A, C and Reo5• = Ue 8* j v. 

1.13 For a turbulent boundary layer, the velocity is given by u+ = y+ in the sublayer 
and by the law of the wall, Equations (1 .20) and (1 .2 1 ), in the log layer. Determine by 
trial and error (or Newton's iterations if you are familiar with the method) the value of 
y+ (to the nearest 1 /1 0) at which the sublayer and log-layer velocity profiles are equal. 

1.1  4 We would like to determine the values of Reynolds number, Re, for which the 
Barenblatt exponent, a ,  is 1 /6, 1 /7 and 118. Compare the values inferred by using the 
Barenblatt correlation, Equation (1 .3 9), and the Zagarola correlation, Equation ( 1 .40). 
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1.15 According to Equation ( 1 .32), at the boundary-layer edge we have 

Ue 1 11 Urc5 
C 

2II 
- = -�n + + -
Ur K 1/ K 

3 1  

We would like to determine how skin friction, c f = 2u; I u;_ ' is affected by changes in 

the quantities C and II. 
(a) Assuming only Ur varies with C, verify that 

1 dCJ _ 2K CJ/2 

c f dC - - -
,-+-'---;c=,

=:/::::::2 

(b) Assuming Cf = 0.002, based on the result of Part (a), how much of a change in 
C is required to give a 3% change in CJ? Be sure to include a sign in your result. 

(c) Derive a similar result for (dct jdii)/ct and detetmine the approximate change in 
Cf for a decrease in II of 1 .0. Assume CJ = 0.002. 
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osure 

Because turbulence consists of random fluctuations ofthe various flow properties, 
we use a statistical approach. Our purposes are best served by the procedure 
introduced by Reynolds ( 1 895) in which all quantities are expressed as the sum of 
mean and fluctuating parts. We then form the mean of the continuity and N avier
Stokes equations term by term. As we will see in this chapter, the nonlinearity of 
the Navier-Stokes equation leads to the appearance of momentum fluxes that act 
as apparent stresses throughout the flow. These momentum fluxes are unknown 
a priori. We then derive equations for these stresses, which include additional 
unknown quantities. This illustrates the issue of closure, i.e., establishing a 
sufficient number of equations for all of the unknowns. The chapter concludes 
with a discussion of turbulence scales and more-advanced statistical concepts. 

To illustrate the nature of turbulence statistics, it is instructive to observe 
how the velocity field behaves for a turbulent flow. Figure 2 . 1  shows measured 
velocity profiles, u(y ) , for a flat-plate boundary layer. Plotted with a series 

y 

u 

Figure 2. 1 :  Instantaneous boundary-layer velocity profiles at the same distance 
from the leading edge of a flat plate at 1 7  different instants. The profiles are 
shown with a series of staggered origins. [From Cebeci and Smith (1 9 7 4) -
Copyright© A cademic Press 1974 Used with permission. ] 

33 
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of staggered origins, all 1 7 profiles correspond to the same distance from the 
plate leading edge, and have been measured at several different times using the 
hydrogen-bubble technique. While the experimental method is a bit crude, e.g., 
the profiles appear incorrectly multi valued 1 in a few locations, the measured 
velocity profiles correctly show that the velocity profile changes shape rather 
dramatically from one instant to the next. 

Figure 2.2(a) displays all of the velocity profiles, only this time with a com
mon origin. Clearly, there is a large scatter in the value of the velocity at each 
distance y from the surface. Figure 2.2(b) shows a standard mean velocity profile 
for a boundaty layer at the same Reynolds number. Comparison of the profiles 
in (a) and (b) clearly illustrates that the turbulent fluctuations in the velocity 
cannot be regarded as a small perturbation relative to the mean value. In the 
following sections, we explore the classical statistical methods used to analyze 
this inherently complex behavior. 

y y 

u u 
(a) All profiles -one origin · (b) Average profile 

Figure 2.2: Instantaneous and average boundary-layer velocity profiles at the 
same distance from the leading edge of a flat plate. [From Cebeci and Smith 
(1974) -- Copyright© Academic Press 1974 U..<;ed with permission.} 

2.1 Reynolds Averaging 

We begin with the averaging concepts introduced by Reynolds ( 1 895). In general, 
Reynolds averaging assumes a variety of forms involving either an integral or a 
summation. The three forms most pertinent in turbulence-model research are the 
time average, the spatial average and the ensemble average: the general term 
used to describe these averaging processes is "mean." 

Time averaging is appropriate for stationary turbulence, i.e., a turbulent 
flow that, on the average, does not vary with time, such as flow in a pipe driven 

1 The hydrogen-bubble technique cannot isolate the velocity component parallel to the surface, so 
that the profiles include effects of vertical motion as well, and the apparently multivalued profiles 
are really a kind of velocity-vector plot. This also illustrates that fluctuating velocities are large in 
all directions. 



2.1. REYNOLDS AVERAGING 35 

Figure 2.3: Osborn Reynolds (1842-1912), whose 1895 paper on the dynamics 
of fluid motion established the averaging techniques that bear his name. 

by a constant-speed blower. For such a flow, we express an instantaneous flow 

variable as f(x, t) . Its time average, FT(x), is defined by 

. 1 F'-r(x) = }.m� 
T t 

t+T 
f(x, t) dt (2.1) 

The velocity profile depicted in Figure 2.2(b ), for example, was obtained using 

time averaging for accurate measurements of a similar boundary layer. The 

applicability of Reynolds averaging (of whatever kind) implicitly depends upon 

this steadiness of mean values. Time averaging is the most commonly used form 

of Reynolds averaging because most turbulent flows of interest in engineering 

are stationary. There are important exceptions, of course, such as the motion of 

the atmosphere. 
Spatial averaging can be used for homogeneous turbulence, which is a 

turbulent flow that, on the average, is uniform in all directions. We average over 
all spatial coordinates by doing a volume integral. Calling the average Fv, we 

have 

Fv(t) 
1 

lim 
V v CX) 

• 

f(x, t) dV (2.2) 
v 

Ensemble averaging is the most general type of Reynolds averaging suitable 

for, e.g., flows that decay in time. As an idealized example, in terms of mea

surements from N identical experiments (with initial and boundary conditions 

that differ by random infinitesimal perturbations) where f(x, t) fn(x, t) in the 

nth experiment, the average is F E• defined by 

(2.3) 
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t 

Figure 2.4: Time averaging for stationary turbulence. Although obscured by the 
scale of the graph, the instantaneous velocity, ui(x, t), has continuous derivatives 
of all order. 

From this point on, we will consider only time averaging. There is no loss 
of generality however as virtually all of our results are valid for other kinds of 
Reynolds averaging. Consider a stationary turbulent flow so that Equation (2.1)  
holds. For such a flow, we express the instantaneous velocity, ui(x, t), as the 
sum of a mean, Ui(x), and a fluctuating part, u�(x, t), so that2 

(2.4) 

As in Equation (2.1), the quantity Ui(x) is the time-averaged, or mean, ve
locity defined by 

• 

Le., 

. 1 
hm 

T-->00 T t 

t+T 
ui(x, t) dt (2.5) 

The time average of the mean velocity is again the same time-averaged value, 

T CXJ t 

t+T 
ui (x) dt = ui (x) (2.6) 

where an overbar is shorthand for the time average. The time average of the 
fluctuating part of the velocity is zero. That is, using Equation (2.6), 

t+T 
[ui(x, t)- Ui(x)] dt = Ui(x)- Ui(x) = 0 (2.7) 

While Equation (2.5) is mathematically well defined, we can never truly 
realize infinite T in any physical flow. This is not a serious problem in practice. 
In forming our time average, as illustrated in Figure 2.4, we just select a time T 

2By convention, throughout this text the instantaneous variable is denoted by a lower-case symbol, 
the mean is denoted by the corresponding upper-case symbol and the fluctuating part is the lower-case 
symbol with a prime. 



2.1. REYNOLDS AVERAGING 37 

ui(x,t) 

t 

Figure 2.5: Time averaging for nonstationary turbulence. Although obscured 
by the scale of the graph, the instantaneous velocity, ui ( x, t ) , has continuous 
derivatives of all order. 

that is very long relative to the maximum period of the velocity fluctuations, T1. 
which we don't need to detine precisely. In other words, rather than formally 
taking the limit T oo, we do the indicated integration in Equation (2.5) with 
T >> T1. As an example, for flow at 10  m/sec in a 5 em diameter pipe, an 
integration time of 20 seconds would probably be adequate. In this time the flow 
moves 4000 pipe diameters. 

There are some flows for which the mean flow contains very slow variations 
with time that are not turbulent in nature. For instance, we might impose a 
slowly varying periodic pressure gradient in a duct or we might wish to compute 
flow over a helicopter blade or flow through an automobile muffler. Clearly, 
Equations (2.4) and (2.5) must be modified to accommodate such applications. 
The simplest, but a bit arbitrary, method is to replace Equations (2.4) and (2.5) 
with 

and 
1 

Ui(x, t) = 
T t 

(2.8) 

t+T 
Ui(X, t) dt, (2 .9) 

where T2 is the time scale characteristic of the slow variations in the flow that 
we do not wish to regard as belonging to the turbulence. Figure 2.5 illustrates 
these concepts. 

A word of caution is in order regarding Equation (2.9). We are implicitly 
assuming that time scales T1 and T2 exist that differ by several orders of magni
tude. Many unsteady flows of engineering interest do not satisfy this condition. 
We cannot use Equations (2.8) and (2.9) for such flows because there is no dis
tinct boundary between our imposed unsteadiness and turbulent fluctuations. For 
such flows, the mean [as defined in Equation (2 .9)] and fluctuating components 
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are correlated, i.e., the time average of their product is non-vanishing. In mete
orology, for example, this is known as the spectral gap problem. If the flow is 
periodic, Phase Averaging (see problems section) can be used; otherwise, full 
ensemble averaging is required. Phase averaging is a type of ensemble averaging 
with phase angle replacing time. For a rigorous approach, an alternative method 
such as Large Eddy Simulation (Chapter 8) will be required. 

Clearly our time-averaging process, involving integrals over time, commutes 
with spatial differentiation. Thus, for any scalar p and vector Ui, 

and (2. 1 0) 

Because we are dealing with definite integrals, time averaging is a linear op
eration. Thus if c1 and c2 are constants while a and b denote any two flow 
properties with mean values A and B, respectively, then 

(2.] 1 )  

The time average of an unsteady tetm like 8ui/ 8t is obviously zero for stationary 
turbulence. For nonstationarv turbulence, we must look a little closer. We know 

• 

that 

Ui(x, t + T) -- Ui(x, t) u�(x, t + T) - u�(x, t) 
T 

+ 
T 

(2. 1 2) 
The second term on the right-hand side of Equation (2. 1 2) can be neglected 
provided lu�l is small relative to IUil· Since we are assuming T is very small 
relative to the time scale of the mean flow, i.e. that T « T 2, the first term is the 
value corresponding to the limit T 0, i.e., 8Ud 8t. Hence, 

� 
at (2. 1 3) 

The approximation that lu�l « IUil is always questionable, especially for 
free shear flows and for flows very close to a solid boundary. This is one of 
the inherent complications of turbulence, namely that the fluctuations cannot be 
assumed to be small relative to the mean values. 

Using time averaging in this manner is nevertheless useful for analysis, espe
cially for time-marching numerical methods implemented for solving steady-flow 
problems. Because Equation (2 . 1 3 ) depends on the doubtful approximation that 

I u� I « I Ui I while fluctuations are often in excess of 10% of the mean, a degree 
of caution must be exercised when such methods are used for time-varying flows. 
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2.2 Correlations 

Thus far we have considered averages of linear quantities. When we average the 
product of two properties, say ¢ and '1/J, we have the following: 

4>'1/J (<I> +  c/J') (IJ! + 'If;') <PIJ! + <l>'lj;' + IJ!¢' + ¢''1/J' <PIJ! + ¢''1/J' (2.14) 

where we take advantage of the fact that the product of a mean quantity and a 

fluctuating quantity has zero mean because the mean of the latter is zero. There 
is no a priori reason for the mean of the product of two fluctuating quantities 
to vanish. Thus, Equation (2.14) tells us that the mean value of a product, ¢1/J, 
differs from the product of the mean values, <PIJ!. The quantities ¢' and 't// are 
said to be correlated if ¢''1// i= 0. They are uncorrelated if ¢''1/J' 0. 

Similarly, for a triple product, we find 

(2.15) 

Again, terms linear in ¢', 'If;' or f.' have zero mean. As with terms quadratic in 
fluctuating quantities, there is no a priori reason for the cubic term, ¢' 'lj/ f.', to 
vanish. 

2.3 Reynolds-Averaged Equations 

For simplicity we confine our attention to incompressible, constant-property flow. 
Effects of compressibility will be addressed in Chapter 5. The equations for 
conservation of mass and momentum are 

aui 
=0 

a xi 

aui aui ap atji 
p 

at 
+ pUj 

ax · = -a 
+ 

a J Xi Xj 

(2.16) 

(2.17) 

The vectors ui and Xi are velocity and position, t is time, p is pressure, p is 
density and tij is the viscous stress tensor defined by 

where /.L is molecular viscosity and Sij is the strain-rate tensor, 

1 
Sij = -2 

au au· __ t + J 
axj ax.i 

(2.18) 

(2 . 1 9) 

Note that Sji Sij, so that tji tij for simple viscous fluids (but not for some 
anisotropic liquids). 
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To simplify the time-averaging process, we rewrite the convective tem1 in 
"conservation" fonn, i.e., 

(2.20) 

where we take advantage of mass conservation [Equation (2 . 1 6)] in order to drop 
ui{)ujjOxj. Combining Equations (2 . 1 7) through (2.20) yields the Navier-Stokes 
equation in conservation fotm. 

(2.2 1 )  

Time (ensemble) averaging Equations (2. 1 6) and (2 .2 1 )  yields the Reynolds 
averaged equations of motion in conservation form, viz., 

(2.22) 

(2.23) 

The time-averaged mass-conservation Equation (2.22) is identical to the instanta
neous Equation (2 . 1 6) with the mean velocity replacing the instantaneous velocity. 
Subtracting Equation (2.22) from Equation (2.16) shows that the fluctuating ve
locity, u�, also has zero divergence. Aside from replacement of instantaneous 
variables by mean values, the only difference between the time-averaged and in
stantaneous momentum equations is the appearance of the correlation u�uj . This 
is a time-averaged rate of momentum transfer due to the turbulence. 

Herein lies the fundamental problem of turbulence. In order to compute 
all mean-flow properties of the turbulent flow under consideration, we need a 
prescription for computing u�uj . 

Equation (2 .23) can be written in its most recognizable form by using Equa
tion (2.20) in reverse. The resulting equation is 

(2.24) 

Equation (2.24) is usually referred to as the Reynolds-averaged Navier-Stokes 
equation (RANS). The quantity -pu�uj is known as the Reynolds-stress tensor 
and we denote it by PTij, so that Tij is the specific Reynolds stress tensor given 
by 

Tij -u�uj (2.25) 

By inspection, Tij Tji so that this is a symmetric tensor, and thus has six 
independent components. Hence, we have produced six unknown quantities as 
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a result of Reynolds averaging. Unfortunately, we have gained no additional 
equations. Now, for general three-dimensional flows, we have four unknown 
mean-flow properties, viz., pressure and the three velocity components. Along 
with the six Reynolds-stress components, we thus have ten unknowns. Our 
equations are mass conservation [Equation (2.22)] and the three components of 
Equation (2.24) for a grand total of four. This means our system is not yet closed. 
To close the system, we must find enough equations to solve for our unknowns. 

2.4 The Reynolds-Stress Equation 

In quest of additional equations, we can take moments of the Navier-Stokes equa
tion. That is, we multiply the Navier-Stokes equation by a fluctuating property 
and time average the product. Using this procedure, we can derive a differential 
equation for the Reynolds-stress tensor. To illustrate the process, we introduce 
some special notation. Let N( ui) denote the "Navier-Stokes operator," viz., 

(2.26) 

The viscous term has been simplified by noting from mass conservation (for 
incompressible flow) that Bki,k ui,kk· The Navier-Stokes equation can be 
written symbolically as 

(2 .27) 

In order to derive an equation for the Reynolds stress tensor, we fotm the fol
lowing time average. 

(2 .28) 

Note that, consistent with the symmetry of the Reynolds stress tensor, the 
resulting equation is also symmetric in i and j. For the sake of clarity, we proceed 
term by term. Also, for economy of space, we use tensor notation for derivatives 
throughout the time averaging process. Non-obvious results in the following 
equations usually involve the continuity equation (Bud 8xi 8uU 8xi 0) in 
various ways. First, we consider the unsteady term. 

u�(puJ ),t + uj (pui),t 

(2 .29) 
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We have gained six new equations, one for each independent component of 
the Reynolds-stress tensor. However, we have also generated 22 new unknowns! 
Specifically, accounting for all sytmnetries, we have the following. 

u�u1.u1k � J 

ul. 8 I 
+ _2.. 'P p OXi 

10 unknowns 

6 unknowns 

6 unknowns 

With a little rearrangement of tenus, we can cast the Reynolds-stress equa
tion in suitably compact fonn, viz., 

where 

PI 
Ilij = p 

8u1 au)'
_..:;_� + -
OXj OXi 

au� 8u'-
f.· · -- 2v· � 3 

11 a a Xk Xk 

(2.34) 

(2 .35) 

(2 .36) 

C I I I + I I>" + I I >" (2 37) p ijk puiUjUk p UiUjk p UjUik . 

This exercise illustrates the closure problem of turbulence. Because of the 
nonlinearity of the Navier-Stokes equation, as we take higher and higher mo
ments, we generate additional unknowns at each level. At no point will this 
procedure balance our unknowns/equations ledger. On physical grounds, this is 
not a particularly surprising situation. After all, such operations are strictly math
ematical in nature, and introduce no additional physical principles. In essence, 
Reynolds averaging is a brutal simplification that loses much of the information 
contained in the Navier-Stokes equation. The function of turbulence modeling 
is to devise approximations for the unknown correlations in terms of flow prop
erties that are known so that a sufficient number of equations exists. In making 
such approximations, we close the system. 

2.5 The Scales of Turbulence 

In Chapter 1, we introduced the Kolmogorov length, velocity and time scales, 
which are characteristic of the smallest eddies. We also discussed the integral 
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length scale, £, which is representative of the energy-bearing eddies. While these 
are some of the most useful scales for describing turbulence, there are others that 
are commonly used. The purpose of this section is to further quantify the most 
commonly used turbulence scales, and briefly introduce the concept of two-point 
correlations. 

2.5.1 Turbulence Intensity 

The Kolmogorov scales, defined in Equation (1.1), provide an estimate of the 
length, velocity and time scales for the smallest eddies in a turbulent flow. The 
integral length scale, whose definition has been deferred to this chapter, is a 
characteristic size of the energy-bearing eddies. Another important measure of 
any turbulent flm:v is how intense the turbulent fluctuations are. We quantify this 
in terms of the specific normal Reynolds stress components, u'2, v'2 and w12. 
These three normal Reynolds stresses can also be regarded as the kinetic energy 
per unit mass of the fluctuating velocity field in the three coordinate directions. 
These Reynol4s stre::;ses are often normalized relative to the freestream mean-flow 
velocity, Ue, according to 

I - -

(2.3 8) 

The quantities u, v and w are known as the relative intensities in the x, y and 
z directions, respectively. 

Figure 2 .6 displays the relative intensities for an incompressible flat-plate 
boundary layer. As shown, the three intensities have different values throughout 
most of the boundary layer. This is true because the turbulence is anisotropic, 
i .e., the normal-stress components are unequal . As a rough but useful approxi
mation for a flat-plate boundary layer, we find that 

(2 .39) 

These ratios are of course not constant through the layer; also, they are by 
no means universal for boundary layers, being strongly influenced by pressure 
gradient and compressibility. 

Note that the streamwise intensity, u u'2/Ue, exceeds 0.10, or 1 0%, 
very close to the surface. This is consistent with the instantaneous velocity 
profiles shown in Figure 2 .2, and further reinforces the claim that the turbulent 
fluctuations cannot be adequately treated as a small perturbation about the mean. 

If we sum the three normal Reynolds stresses and multiply by �, we have 
the turbulence kinetic energy, which we denote by the symbol k. Thus, by 
definition, 

(2.40) 
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Figure 2 .6 :  Turbulence intensities for a flat-plate boundary layer of thickness o. 
The inset shows values very close to the surface [From Klebanoff(J955)). 

This is  the kinetic energy of the turbulent fluctuations per unit mass, and is the 
same as the quantity defined in Equation (1.3). 

As a concluding comment, many turbulence models in current use cannot 
distinguish the individual normal Reynolds stresses. Rather, only k is provided 
from the turbulence model. When this is true, we often specify relative turbu
lence intensity by assuming the fluctuations are more-or-less isotropic, i.e., that 
u'2 � v'2 � w'2. We then define 

2 k 

which gives the relative intensity in percent. 

2.5.2 Two-Point Correlation Tensors and Related Scales 

(2.41) 

All of the discussion in this chapter thus far has dealt with single-point corre
lations. That is, we have been dealing with correlations of turbulent fluctuations 
at a single point in the flowfield. However, as discussed at the end of Subsec
tion 1.3 .2, turbulent eddies are large (and long lived). Consequently, it cannot in 
general be described entirely in terms of local-flow properties. Townsend (1976) 
states this succinctly as follows. 
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Unlike the molecular motion of gases, the motion at any point in a 
turbulent flow affects the motion at other distant points through the 
pressure field, and an adequate description cannot be obtained by 
considering only mean values associated with single fluid particles. 
This might be put by saying that turbulent motion is less random and 
more {organized] than molecular motion, and that to describe the 
[organization} of the flow requires mean values of the functions of 
the flow variables for rn·o or more particles at two or more positions. 

In this subsection, we introduce the notion of two-point correlations, and in
troduce related time and length scales characteristic of turbulent motion. 

There are two types of two-point correlations commonly used in experimental 
and theoretical turbulence studies. One involves a separation in time while the 
other is based on a spatial separation. The two are related by Taylor' s  (1935) 
hypothesis, which assumes temporal and spatial separations are related by 

a =-U a 
at ax 

(2.42) 

This implies the turbulent fluctuations are convected along at the mean-flow 
speed, U. The Taylor hypothesis is valid provided the turbulent fluctuations are · 

sufficiently weak to avoid inducing significant alterations in the rate at which 
they are convected. This relationship permits inferring more-relevant two-point 
space-correlation information from easier-to-measure one-point time-correlation 
data. 

Considering first correlation of velocities at one point and two different times, 
we define the autocorrelation tensor, viz., 

Rij(x, t; t') u�(x, t)uj(x, t + t') (2.43) 

That is, we time average the fluctuating quantities at the same point in space but 
at different times. To see the connection to single-point statistics, note that the 
turbulence kinetic energy is half the trace of Rij with t' 0, i.e., 

(2.44) 

A useful time scale characteristic of the energy-bearing eddies can be obtained 
by integrating Rii over all possible values oft'. Thus, we arrive at the integral 
time scale, 

T(x,t) 

oo 
Rii(x, t; t') 

dt' 
0 2k(x, t) 

(2.45) 

In defining T(x, t) , we have nonnalized Rii relative to k. For experimental 
work involving stationary turbulence, i.e., turbulence for which mean values are 
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independent of time, we commonly work with the single streamwise component 

R.11(x; t') u'(x, t)u'(x, t + t'). Normalizing with respect to u12, we arrive at 
the Eulerian time-correlation coefficient defined by 

RE(x; t') __ u'(x, t)u'(x, t + t') 

u'2(x) 

(2.46) 

By definition, R.E 1 when t' 0. For large values of t', we expect the 
fluctuations to be uncorrelated so that RE 0 as It' I ) oo. Finally, shifting the 
time origin shows that R11 (x; t') R11 (x; -t'), so that RE is an even function 
oft'. Figure 2.7 shows a typical Eulerian time-correlation coefficient. 

We can determine another time scale by noting the shape of the Eulerian 
time-correlation coefficient for small time displacement, t'. This is determined, 
of course, mainly by the smaU dissipating eddies. That is, expanding in Taylor 
series about t' 0, we have 

12 t' 
2 

(2.47) 
t1=0 

where we define the micro-time scale, TE, as 

/,-------- 2 
(2.48) 

Figure 2.7 shows how Equation (2.47) relates geometrically to the exact 
time-correlation coefficient. Truncating beyond the tetm quadratic in t' yields a 
parabola known as the osculating parabola. Its curvature matches that of the 
exact curve at t' 0. The intercept with the horizontal axis is at t T E. 

--

/:'"/ ', I \ I \ I \ I \ I I ' \ 
I I 

I I I I I \ I \ I I I I I I I I I I I I ' I I I ' I 

t' 

Figure 2.7: A typical Eulerian time-correlation coefficient ( ) with its oscu
lating parabola (- - -)_ 
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Turning now to the two-point space correlation, we consider two points in 
the flow, say x and x+r, and do our time average. The two-point velocity 

correlation tensor is defined as 

Rij(x, t; r) u�(x, t)uj(x + r, t) (2.49) 

Here, the vector r is the displacement vector between the two points in the flow. 
As with the autocorrelation tensor, the turbulence kinetic energy is simply one 
half the trace of Rij with zero displacement. viz., 

k(x, t) 
1 
2Rii(x, t; 0) (2 .50) 

Normalizing Rij with respect to k, the integral length scale, .e, is defined 
as the integral of Rii over all displacements, r lrl, so that 

where 3/16 is a scaling factor. 

16 0 k(x, t) 
(2 .5 1 )  

In an entirely analogous manner to our analysis of two-point time correlations, 
we can determine a length scale corresponding to the smallest eddies. We work 
with the longitudinal correlation function for stationary turbulence defined by 

u'2(x) 
(2.52) 

Constructing the osculating parabola for f ( x), we fi_nd the Taylor microscale 
given by 

-2 
(2 .53) 

Taylor's hypothesis tells us the micro-time scale, T E, is related to ,\ by 

(2 .54) 

As a final comment, when the turbulence is homogeneous and isotropic, 
the analysis of Taylor ( 1 935) shows that the turbulence kinetic energy decays 
according to 

dk 
dt 

= 
10vk 

(2.55) 

To see how ,\ relates to the Kolmogorov length, we note that for homogeneous, 
isotropic turbulence, the rate of decay of k is simply the dissipation rate, E, so 
that 

E = 
lOvk 

),2 (2 .56) 
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Provided the Reynolds number is not too small, Taylor argues that E "' k312 1 f. 
We can sharpen the estimate by appealing to measurements that indicate 

k3/2 

E :::::; 0.09 
f 

d 

0.09 

2/3 

(2 .57) 

Then, using the definition of the Kolmogorov length, TJ ( v3 IE) 114, [see Equa-
tion ( 1 . 1 )] combining Equations (2.56) and (2.57) yields 

,\ f 1/3 
- :::::; 7 - (2.58) 
TJ TJ 

Since f/TJ must be at least 103 to have a well-defined inertial subrange, the Taylor 
microscale will be at least 70 times the Kolmogorov length. It will typically lie 
within the inertial subrange, but well above the range of the very smallest eddies. 

Such a hybrid parameter is of questionable value in turbulence modeling re
search, which, for the sake of simplicity, attempts to separate the physics of the 
large eddies from that of the small eddies. Recall, for example, how the assump
tion of a "wide separation of scales" is used to deduce the Kolmogorov -5/3 
law (Subsection 1 .3 .4) and the logarithmic law of the wall (Subsection 1 .3 .5). 
To understand why the Taylor microscale is a hybrid length scale, observe that 
we can use Equation (2.56) to solve for ..\, viz., 

lOvk 

(2 .59) 

Hence, this length scale involves a quantity characteristic of the large, energy
bearing eddies, k, as well as quantities characteristic of the small, dissipating 
eddies, v and E. Because the Taylor microscale is generally too small to char
acterize large eddies and too large to characterize small eddies, it has generally 
been ignored in most turbulence-modeling research. The same comments apply 
to the micro-time scale, Te. 
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2.1 Develop the time-averaged fmm of the equation of state for a perfect gas, p = pRT, 
accounting for turbulent fluctuations in the instantaneous pressure, p, density, p, and 
temperature, T. 
2.2 Suppose we have a velocity field that consists of: (i) a slowly varying component 
U(t) U0e-t/T where Uo and T are constants and (ii) a rapidly varying component 
u' aUo cos (27rt/c2r) where a and care constants with c «:: 1. We want to show that 
by choosing T = cT, the limiting process in Equation (2.9) makes sense. 

(a) Compute the exact time average of u = U + u'. 

(b) Replace T by cT in the slowly varying part of the time average oftt and let tf = c2r 
in the fluctuating part of tt to show that 

U + u' = U(t) + O(c) 

where 0( c) denotes a quantity that goes to zero linearly with c as c 0. 
(c) Repeat Parts (a) and (b) for dtt/dt, and verify that in order for Equation (2.13) to 

hold, necessarily a «:: c. 

2.3 For an imposed periodic mean flow, a standard way of decomposing flow properties 
is to write 

tt(x, t) = U(x) + u(x, t) + tt'(x, t) 

where U(x) is the mean-value, u(x, t) is the organized response component due to the 
imposed organized unsteadiness, and tt' ( x, t) is the turbulent fluctuation. U ( x) is defmed 
as in Equation (2.5). We also use the Phase Average defmed by 

u(x, t + nr) 
n=O 

where T is the period of the imposed excitation. Then, by defmition, 

< u(x, t) > = U(x) + u(x, t), < tt(x, t) > = U(x), < u(x, t) >= u(x, t) 

Verify the following. Do not assume that u is sinusoidal. 

(a) u 0 
(b) tt' 0 
(c) uv' = 0 

(d)<U>=U 
(e) < u' > = 0 
(f) <Uv>= U<v> 

(g) <uv>= u<v> 
(h) <uv' > = o 

2.4 Compute the difference between the Reynolds average of a triple product .\Jo- and 

the product of the means, A.6.:E. 

2.5 Compute the difference between the Reynolds average of a quadruple product ¢1/Jf;.v 
and the product of the means, <I> \fiST. 
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2.6 For an incompressible flow, we have an imposed freestream velocity given by 

u(x, t) = U0(l- ax) + U0ax sin 211-jt 

where a is a constant of dimension 1/length, Uo is a constant reference velocity, and f 
is frequency. Integrating over one period, compute the average pressure gradient, dP / dx, 
for f = 0 and f =1- 0 in the freestream where the inviscid Euler equation holds, i.e., 

au au ap p at + pu ax = - ax 
2.7 Consider the Reynolds-stress equation as stated in Equation (2.34). 

(a) Show how Equation (2.34) follows from Equation (2.33). 

(b) Contract Equation (2.34), i.e., set i = j and perform the indicated summation, to 
derive a differential equation for the kinetic energy of the turbulence per unit mass 
defined by k = �u�u�. 

2.8 Consider the third-rank tensor u';uju� appearing in Equation (2.33). In general, 
third-rank tensors have 27 components. VerifY that this tensor has only 10 independent 
components and list them. 

2.9 If we rotate the coordinate system about the z axis by an angle(), the Reynolds stresses 
for an incompressible two-dimensional boundary layer transform according to: 

I 
Txy 

I Tzz 

--

--

--

--

1 
Txy COS 2(}- 2 (Txx- Tyy) sin 2(} 

Tzz 

Assume the nounal Reynolds stresses, Txx = -u12 , etc. are given by Equation (2.39), 
and that the Reynolds shear stress is Txy = -U1V1 � 130 k. 

y 
yl xl 

Problem 2.9 

(a) Determine the angle the principal axes make with the xy axes, i.e., the angle that 
yields T� y = 0. 

(b) What is the Reynolds-stress tensor, rij, in the principal axis system? 
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2.10 Using Figure 2.6, determine the values of u'2 I k, v'2 I k and w'2 I k for dimensionless 
distances from the surface of y I o = 0.2, 0.4 and 0.6. Determine the percentage differences 
between measured values and the following approximations. 

(a) Equation (2.39) 

2.11 Verity that, tbr homogeneous-isotropic turbulence, the ratio of the micro-time scale, 
rE, to the Kolmogorov time scale varies linearly with the isotropic turbulence-intensity 
parameter, T'. 

' 



The simplest of all turbulence models are described as algebraic. These models 
use the Boussincsq eddy-viscosity approximation1 to compute the Reynolds 
stress tensor as the product of an eddy viscosity and the mean strain-rate tensor. 
For computational simplicity, the eddy viscosity, in tum, is often computed in 
terms of a mixing length that is analogous to the mean free path in a gas. In 
contrast to the molecular viscosity, which is an intrinsic property of the fluid, the 
eddy viscosity (and hence the mixing length) depends upon the flow. Because 
of this, the eddy viscosity and mixing length must be specified in advance, most 
simply, by an algebraic relation between eddy viscosity and length scales of the 
mean flow. Thus, algebraic models are, by definition, incomplete models of 
turbulence. This is by no means a pejorative term as incomplete models have 
proven to be useful in many engineering fields. 

We begin this chapter by first discussing molecular transport of momentum. 
Next we introduce Prandtl 's mixing-length hypothesis and discuss its physical im
plications and limitations. The mixing-length model is then applied to free shear 
flows for which self-similar solutions hold. We discuss two modem algebraic 
turbulence models that are based on the mixing-length hypothesis, including ap
plications to attached and separated wall-bounded flows. The latter applications 
illustrate the limit to the algebraic model's range of applicability. An interesting 
separated-flow replacement for algebraic models, known as the Half-Equation 
Model, improves agreement between computed and measured flow properties. 
The chapter concludes with a discussion of the range of applicability of algebraic 
and half-equation models. 

1 Throughout this text, we use the terminology Boussinesq approximation for consistency with 
general turbulence literature. Strictly speaking, we could more aptly describe it as the Boussinesq 
assumption since it is not an approximation in any useful sense. By contrast, specific fonnulas for 
the eddy viscosity are. 
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3.1 Molecular Transport of Momentum 

To understand the motivation for the Boussinesq approximation, it is instructive 
to discuss momentum transport at the molecular level. However, as a word of 
caution, molecules and turbulent eddies are fundamentally different. They 
are so different that we will ultimately find, in Section 3. 2, that the analogy 
between turbulent and molecular mixing is false! It is nevertheless fruitful to 
pursue the analogy to illustrate how important it is to check the premises underly
ing turbulence closure approximations. At first glance, mimicking the molecular 
mixing process appears to be a careful exercise in physics. As we will see, the 
model just cannot stand up under close scrutiny. 
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Figure 3. 1 : Shear-flow schematic. 
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We begin by considering a shear flow in which the velocity is given by 

U- U(y) i (3.1) 

where i is a unit vector in the x direction. Figure 3.1 depicts such a flow. We 
consider the flux of momentum across the plane y 0, noting that molecular 
motion is random in both magnitude and direction. Molecules migrating across 
y 0 are typical of where they come from. That is, molecules moving up 
bring a momentum deficit and vice versa. This gives rise to a shear stress txy· 

At the molecular level, we decompose the velocity according to 

u -- U + u" (3.2) 
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where U is the average velocity defined in Equation (3.1) and u" represents 
the random molecular motion. The instantaneous flux of any property across 
y 0 is proportional to the velocity normal to the plane which, for this flow, is 
simply v" . Thus, the instantaneous flux of x-directed momentum, dpxy, across 
a differential surface area dS normal to the y direction is 

dpxy p(U + u")v" dS (3.3) 

Performing an ensemble average over all molecules, we find 

The stress acting on y 
fluid mechanics to set Cl'ij 
stress tensor. Thus, 

dPxy pu"v"dS (3 .4) 

0 is defined by Cl'xy dPxy/dS. It is customary in 
pt5ij - tij, where p is pressure and tij is the viscous 

txy -pu" v" (3 .5) 
Equation (3 .5) bears a strong resemblance to the Reynolds-stress tensor. This 
is not a coincidence. As pointed out by Tennekes and Lumley (1983), a stress 
that is generated as a momentum flux can always be written in this fonn. The 
only real difference is that, at the macroscopic level, the turbulent fluctuations, 
u' and v', appear in place of the random molecular fluctuations, u" and v" . This 
similarity is the basis of the Boussinesq eddy-viscosity approximation. 

Referring again to Figure 3 .1, we can appeal to arguments from the kinetic 
theory of gases [e.g., Jeans (1962)] to determine txy in terms of U (y) and the fluid 
viscosity, Jl. First, consider the average number of molecules moving across unit 
area in the positive y direction. For a perfect gas, molecular velocities follow the 
Maxwellian distribution so that all directions are equally probable. The average 
molecular velocity is the thermal velocity, Vth, which 1s approximately 4/3 times 
the speed of sound in air. On average, half of the molecules move in the positive 
y direction while the other half move downward. The average vertical component 
of the velocity is Vth cos¢ where ¢ is the angle from the vertical. Integrating 
over a hemispherical shell, the average vertical speed is Vth/2. Thus, the average 
number of molecules moving across unit area in the positive y direction is nvth/4, 
where n is the number of molecules per unit volume. 

Now consider the transfer of momentum that occurs when molecules starting 
from point P cross the y 0 plane. As stated earlier, we assume molecules are 
typical of where they come from. On the molecular scale, this is one mean 
free path away, the mean free path being the average distance a molecule travels 
between collisions with other molecules. Each molecule starting from a point P 
below y 0 brings a momentum deficit of m[U(O)- U( -t'mfp)], where m is 
the molecular mass and t'mfp is the mean free path. Hence, the momentum flux 
from below is 

1 1 dU 
�P- -- 4PVth[U(O)- U( -fmfp)] � 4PVthfmfp 

dy 
(3 .6) 
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We have replaced U( -.emJp) by the first two terms of its Taylor-series expan
sion in Equation (3.6) and used the fact that p mn. Similarly, each molecule 
moving from a point Q above the plane y 0 brings a momentum surplus of 
m[U(fmJp) - U(O)], and the momentum flux from above is 

1 1 dU 
�p+ = 4PVth[U(emJp)- U(O)] � 4PVthfmfp dy 

(3 .7) 

Consequently, the net shearing stress is the sum of �p __ and �p +• wherefore 

(3.8) 

Hence, we conclude that the shear stress resulting from molecular transport 
of momentum in a perfect gas is given by 

dU 
txy = f../, dy 

where J1, is the molecular viscosity defined by 

(3 .9) 

(3 . 1 0) 

The arguments leading to Equations (3 .9) and (3 . 1 0) are approximate and 
only roughly represent the true statistical nature of molecular motion. Interest
ingly, Jeans ( 1 962) indicates ihat a precise analysis yields p 0.499pvthfmfp, 
wherefore our approximate analysis is remarkably accurate! However, we have 
made two implicit assumptions in our analysis that require justification. 

First, we have truncated the Taylor series appearing in Equations (3 .6) and 
(3.7) at the linear terms. For this approximation to be valid, we must have 
fmJpid2U/dy2J « ldUjdyi. The quantity L defined by 

ldU/dyJ 
ld2U I dy21 

(3 . 1 1 ) 

is a length scale characteristic of the mean flow. Thus, the linear relation between 
stress and strain-rate implied by Equation (3.9) is valid provided the Knudsen 
number, K n, is very small, i.e., 

Kn Cmfpf L « 1 (3 . 12) 

For most practical flow conditions,2 the mean free path is several orders of 
magnitude smaller than any characteristic length scale of the mean flow. Thus, 
Equation (3 . 1 2) is satisfied for virtually all terrestrial engineering problems. 

2Two noteworthy exceptions are very-high altitude flight and micron-scale flows such as those 
encountered in micro-machinery. 
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Second, in computing the rate at which molecules cross y 0, we assumed 
that u" remained Maxwellian even in the presence of shear. This will be true 
if molecules experience many collisions on the time scale of the mean flow for, 
otherwise, they would have insufficient time to adjust to mean-flow changes. 
Now, the average time between collisions is fmtp/Vth· The characteristic time 
scale for the mean flow is JdU / dy J - 1 . Thus, we also require that 

Vth 
fmfp « JdUjdyJ 

(3. 1 3) 

Since Vth is of the same order of magnitude as the speed of sound, the right-hand 
side of Equation (3 . 1 3) defines yet another mean-flow length scale. As above, 
the mean free path is several orders smaller than this length scale for virtually 
all flows of engineering interest. 

3.2 The Mixing-Length Hypothesis 

Prandtl ( 1 925) put forth the mixing-length hypothesis. He visualized a simplified 
model for turbulent motion in which fluid particles coalesce into lumps that cling 
together and move as a unit. He further visualized that in a shear flow such as 
that depicted in Figure 3 . 1 , the lumps retain their x-directed momentum for a 
distance in the y direction, frnix, that he called the mixing length. In analogy to 
the molecular momentum transport process with Prandtl' s lump of t1uid replacing 
the molecule and fmix replacing lmfp• we can say that similar to Equation (3 .8), 

(3 . 1 4) 

The formulation is not yet complete because the mixing velocity, Vmix, has 
not been specified. Prandtl further postulated that 

dU 
Vmix constant · frnix 

dy 
(3 . 1 5) 

which makes sense on dimensional grounds. Because Cmix is not a physical 
property of the fluid, we can always absorb the constant in Equation (3 . 1 5) and 
the factor 1 /2 in Equation (3 . 14) in the mixing length. Thus, by analogy to 
Equations (3.9) and (3 . 1 0), Prandtl 's  mixing-length hypothesis leads to 

dU 
Txy Vr dy 

(3 . 1 6) 

where Vr is the kinematic eddy viscosity given by 

2 dU 
Vr = £ . rntx dy 

(3 . 1 7) 
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Our formulation still remains incomplete since we have replaced Boussi
nesq's  empirical eddy viscosity, vr, with Prandtl ' s  empirical mixing length, .emix· 
Prandtl postulated further that for flows near solid boundaries the mixing length 
is proportional to distance from the surface. This turns out to be a reasonably 
good approximation over a limited portion of a turbulent wall flow. As we will 
see in Section 3.3, for free shear flows such as jets, wakes and mixing layers, 
the mixing length is proportional to the width of the layer, <5. However, each of 
these flows requires a different coefficient of proportionality between .emix and 
6. The point is, the mixing length is different for each flow (its ratio to the flow 
width, for example) and must be knovm in advance to obtain a solution. 

Note that Equation (3.17) can be deduced directly from dimensional analysis . 
Assuming molecular transport of momentum is unimportant relative to turbulent 
transport, we expect molecular viscosity to have no significance in a dimensional 
analysis. The only other dimensional parameters available in a shear flow are 
the assumed mixing length, .emix, and the velocity gradient, dU jdy. (The eddy 
viscosity cannot depend upon U since that would violate Galilean invariance.) 
A straightforwar� dimensional analysis yields Equation (3.17). 

Another interesting observation follows from replacing Txy by its definition 
so that 

-u'v' = £2 I dU dU 
'mix I dy dy 

(3.18) 

The mixing velocity, Vmix, must be proportional to an appropriate average of v' 
such as the RMS value defined by Vrms (v'2)112. Also, Townsend (1976) 
states that in most turbulent shear flows, measurements indicate 

-v/v' I � 0.4UrmsVrms (3 .19) 

Consequently, if ?Jrms "" Vmix, comparison of Equations (3 .15) and (3 .18) shows 
that the mixing-length model implies Vrms and Urms are of the same order of 
magnitude. This is generally true although Urms is usually 25% to 75% larger 
than Vrms for typical shear flows. 

At this point, we need to examine the appropriateness of the mixing-length 
hypothesis in representing the turbulent transport of momentum. Because we have 
made a direct analogy to the molecular transport process, we have implicitly made 
the same two basic assumptions we made for molecular transport. Specifically, 
we have assumed that the Boussinesq approximation holds and that the turbulence 
is unaltered by the mean shear. Unfortunately, neither condition is rigorously 
satisfied in practice! 

Concerning the Boussinesq approximation, its applicability depends upon 
the Knudsen number being small .  Close to a solid boundary, for example, the 
mixing length is approximately linear with distance from the surface, y. Specifi
cally, measurements indicate that f.mix � 0.41y. In the same vicinity, the velocity 
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follows the well-known law of the wall [see Subsection 1 .3.5] ,  and the velocity 
gradient varies inversely with y. Thus, the length L defined in Equation (3. 1 1) 

is equal to y. Consequently, the Knudsen number is of order one, i.e., 

Kn fmix /L � 0.41 (3.20) 

Hence, the linear stress/strain-rate relation of Equation (3.16) is suspect. 
Concerning the effect of the mean shear on the turbulence, the assumed 

lifetime of Prandtl 's lumps of fluid is fmix /Vmix· Reference to Equation (3.15) 
shows that this time is proportional to JdU/dyJ - 1 .  Hence, the analog to Equa
tion (3. 1 3) is 

Vmix 
fmix rv JdU/dyJ 

(3.21) 

Because we do not have .€mix « Vmix /JdU/dyJ, Equation (3.21) tells us 
that the lumps of fluid will undergo changes as they travel from points P and Q 
toward y 0. This is indeed consistent with the observed nature of turbulent 
shear flows. Tennekes and Lumley (1983) describe the situation by saying, 
"the general conclusion must be that turbulence in a shear flow cannot possibly 
be in a state of equilibrium which is independent of the flow field involved. 
The turbulence is continually trying to adjust to its environment, without ever 
succeeding." 

Thus, the theoretical foundation of the mixing-length hypothesis is a bit flimsy 
to say the least. On the one hand, this is a forewarning that a turbulence model 
built on this fotmdation is unlikely to possess a very wide range of applicability. 
On the other hand, as the entire fmmulation is empirical in its essence, the 
usefulness of and justification for any of its approximations ultimately lies in 
how well the model performs in applications, and we defer to the applications 
of the following sections as its justification. 

As a pleasant surprise, we will see that despite its theoretical shortcomings, 
the mixing-length model does an excellent job of reproducing measurements. It 
can be easily calibrated for a specific class of flows, and the model's  predictions 
are consistent with measurements provided we don't depart too far from the 
established data base used to calibrate the mixing length. Eddy-viscosity models 
based on the mixing length have been fine tuned for many flows since 1925, most 
notably by Cebeci and Smith (1974) . Strictly speaking, the term equilibrium 
is nonsensical in the context of turbulent shear flows since, as noted above, 
turbulence is continually attempting to adjust to its environment, without ever 
succeeding. Nevertheless, most turbulence researchers describe certain flows as 
equilibrium turbulent flows. What they actually mean is a relatively simple 
flow with slowly-varying properties. Most flows of this type can be accurately 
described by a mixing-length computation. In this spirit, a fitting definition of 
equilibrium turbulent flow might be a flow that can be accurately described using 
a mixing-length model ! 
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3.3 App tion to Free S Flows 

Our first applications will be to incompressible free shear flows. A flow is 
termed free if it is not bounded by solid surfaces. Figure 3.2 illustrates five 
different types of free shear flows, viz., the far wake, the mixing layer, the plane 
j et, the round j et and the "constrained" radial jet. A wake forms downstream of 
any object placed in a stream of fluid; we will consider only the two-dimensional 
wake. A mixing layer occurs between two parallel streams moving at different 
speeds; for the case shown in the figure, the lower stream is at rest. A plane 
jet (two-dimensional) and a round jet (axisymmetric) occur when fluid is ejected 
from a nozzle or orifice. A radial jet3 occurs when two jets of equal strength 
impinge on one another. We will analyze all three jet configurations, assuming 
the j et issues into a quiescent fluid. 
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(c) Plane/Round Jet 

(b) Mixing Layer 
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(d) Constrained Radial Jet 

Figure 3 .2 :  Free shear flows. 
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All five of these flows approach what is known as self similarity far enough 
downstream that details of the geometry and flow conditions near x 0 become 
unimportant. The velocity component U ( x, y), for example, can be expressed as 

U(x, y) u0(x)F(yj8(x)) (3 .22) 
Similar expressions hold for Txy and vr . This amounts to saying that two velocity 
profiles located at different x stations have the same shape when plotted in the 
scaled form U(x, y)/uo(x) [or (Uoo - U(x, y))/u0(x) for the wake] versus 
yjo(x). Flows with this property are also referred to as self preserving. 

3 We will confine our analysis to the "constrained" radial jet for which the distance between the 
opposing jets is small compared to the jet nozzle diameter. 
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Free shear flows are interesting building-block cases to test a turbulence 
model on for several reasons. First, there are no solid boundaries so that we avoid 
the complications boundaries add to the complexity of a turbulent flow. Second, 
they are mathematically easy to calculate because similarity solutions exist, where 
the Reynolds-averaged equations of motion can be reduced to ordinary differential 
equations. This greatly simplifies the task of obtaining a solution. Third, there 
is a wealth of experimental data available to test model predictions against. 

The standard boundary-layer approximations hold for all five of the shear 
flows considered in this section. Additionally, molecular transport of momentum 
is negligible compared to turbulent transport. Since all five flows have constant 
pressure, the equations of motion are (with m j 0 for the wake, the mixing 
layer and the plane jet; m 0 and j 1 for the round jet; and m 1 and 
j 0 for the radial jet ) : 

= 0  

OX ., oy yi oy 
�Y' Txy 

(3.23) 

(3.24)  

where y is as shown in Figure 3.2. Of course, while the equations are the same 
for all five flows, boundary conditions are different. The appropriate boundary 
conditions will be stated when we discuss each flow. 

As a historical note, in addition to the mixing-length model, Prandtl also 
proposed a simpler eddy-viscosity model specifically for free shear flows, viz., 

1/T x[Umax (x) - Umin (x)]J(x) (3.25) 

where Umax and Umin are the maximum and minimum values of mean velocity 
in the layer, J is the half width of the layer, and x is a dimensionless empirical 
parameter that we refer to as a closure coefficient. This model is very convenient 
for free shear flows because it is a function only of x by construction, and 
acceptable results can be obtained if x is assumed to be constant across the 
layer. Consequently, laminar-flow solutions can be generalized for turbulent 
flow with, at most, minor notation changes. We leave application of this model 
to the problems section. All of the applications in this section will be done using 
Equations (3.16) and (3.17). 

We begin by analyzing the far wake in Subsection 3.3.1. Complete details 
of the similarity-solution method are given for the benefit of the reader who 
has not had much experience with this method. The far wake is especially 
attractive as our first application because a simple closed-form solution can be 
obtained using the mixing-length model. Then, we proceed to the mixing layer 
in Subsection 3.3.2. While an analytical solution is possible for the mixing layer, 
numerical integration of the equations proves to be far simpler. Finally, we study 
the plane, round and radial jets in Subsection 3.3.3. 



62 CHAPTER 3. ALGEBRAIC MODELS 

3.3.1 The Far Wake 

Clearly, the flow in the wake of the body indicated in Figure 3 .2(a) is syrmnetric 
about the x axis. Thus, we solve for 0 :::; y < oo. Boundary conditions follow 
from symmetry on the axis and the requirement that the velocity approach its 
freestream value far from the body. Hence, 

U00 as y 00 U (x, y) 

au 
= 0 at y 0 

ay 

(3 .26) 

(3 .27) 

The classical approach to this problem is to linearize the momentum equation, 
an approximation that is strictly valid only in the far wake [Schlichting-Gersten 
( 1 999)] . Thus, we say that 

U(x, y) U00 i - u (3 .28) 

where lu i  <....� U00 • The linearized momentum equation and boundary conditions 
become 

U 
au

= _  
a'Txy 

00 ax ay 

u(x, y) --7 0 as y --7 00 

at y -- 0 

(3 .29) 

(3 .30) 

(3 .3 1 )  

There is also an integral constraint that must be satisfied by the solution. If 
we consider a control volume surrounding the body and extending to infinity, 
conservation of momentum leads to the following requirement [see Schlichting
Gersten ( 1 999)], 

00 
p U(Uoo - U) dy 

0 

where D is the drag of the body per unit width. 

!n 
2 

(3 .32) 

We use the mixing-length model to specify the Reynolds shear stress, Txy. 
which means we write 

-£2 . au au 
mtx ay ay 

(3 .33)  

Finally, to close our set of equations, we assume the mixing length is pro
portional to the half-width of the wake, 8 ( x) [see Figure 3 .2( a)] . Thus, we say 
that 

fmix a8(x) (3 .34) 
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where a is a closure coefficient. Our fondest hope would be that the same value 
of a works for all free shear flows, and is independent of yjb. Unfortunately, 
this is not the case, which means the mixing-length model must be recalibrated 
for each type of shear flow. 

To obtain the similarity solution to Equations (3 .29) through (3.34), we pro
ceed in a series of interrelated steps. The sequence is as follows. 

1 .  Assume the form of the solution. 

2. Transform the equations of motion. 

3 .  Transform the boundary conditions and the integral constraint. 

4 .  Determine the conditions required for existence of the similarity solution. 

5 .  Solve the resulting ordinary differential equation subject to the transformed 
boundary conditions. 

In addition to these 5 steps, we will also determine the value of the closure 
coefficient a in Equation (3 .34) by comparison with experimental data. 

Step 1 .  We begin by assuming the similarity solution can be written in tenns 
of an as yet unknown velocity scale function, ·u0 ( x),  and the wake half width, 
b ( x) .  Thus, we assume that the velocity can be written as 

(3 .35) 

where the similarity variable, rJ, is defined by 

(3.36) 

Step 2. In order to transform Equation (3 .29), we have to take account 
of the fact that we are making a formal change of dependent variables. We 
are transforming from (x, y) space to (x, rJ) space which means that derivatives 
must be transformed according to the chain rule of calculus. Thus, derivatives 
transform according to the following rules. Note that a subscript means that 
differentiation is done holding the subscripted variable constant. 

a ox a 01] a 
+ 

ox ox ox ox 01] y y "' y X 

a 01] a 
+ 

ox ox 01] "' y X 

a _ b'(x) '17 a 
(3.37) 

ox 01] "' o(x) X 



64 CHAPTER 3. ALGEBRAIC MODELS 

a ox a OrJ a 
+ 

oy oy ox oy OrJ X X X X 

OrJ a 
oy X OrJ X 

1 a 
(3 .38) 

c5(x) OrJ X 

A prime denotes ordinary differentiation so that c5' ( x) 
tion (3 .37). We now proceed to transform Equation (3 .29) . 
derivatives of u are 

dc5 / dx in Equa
For example, the 

ou 
ox 

uo rJ - c5 rJ dr] 

au Uo dF - --· - -
oy c5 drJ 

(3 .39) 

(3 .40) 

Proceeding in this manner for all terms in Equation (3 .29) and using the mixing
length prescription for the Reynolds stress leads to the transformed momentum 
equation. 

U00 c5u� 
F( ) Uoo c5' dF 2 d 

rJ - rJ -- a --
u� ' U0 dr] dr] 

dF dF 
dr] dr] 

(3.41) 

Step 3. Clearly, y oo corresponds to ry oo and y · 0 corresponds to 
rJ --+ 0.  Thus, the boundary conditions in Equations (3.30) and (3 .3 1 )  transfotm 
to 

F(rJ) --+ 0 

dF 
dr] 

0 

as --+ 00 

at 

and the integral constraint becomes 

00 

0 

D 
F(rJ) drJ = -----

2pUoouoc5 

(3 .42) 

(3 .43) 

(3 .44) 

Step 4. In seeking a similarity solution, we are attempting to make a sepa
ration of variables. The two terms on the left-hand side of Equation (3 .4 1 )  have 
coefficients that, in general, vary with x .  Also, the right-hand side of Equa
tion (3 .44) is a function of x .  The condition for existence of the similarity 
solution is that these three coefficients be independent of x. Thus, we require 
the fol lowing three conditions. 

(3.45) 
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The quantities a 1  and a2 must, of course, be constant. Note that we could 
have introduced a third constant in the integral constraint, but it is unneces
sary (we, in effect, absorb the third constant in <5). The solution to these three 
simultaneous equations is simply 

<5(x) -- (3 .46) 

Uo(x) (3 .47) 

(3 .48) 

Step 5. Finally, we expect that F(ry) will have its maximum value on the 
axis, and then fall monotonically to zero approaching the freestream. If this 
is true, then F' ( 'fJ) will be negative for all values of rJ and we can replace its 
absolute value with -F' (ry) . Taking account of Equations (3 .45) through (3.48), 
the momentum equation now simpl ifies to 

(3 .49) 

The second term is a perfect differential so that Equation (3 .49) can be rewritten 
as 

0 (3 .50) 

Integrating once and imposing the symmetry condition at rJ 0 [Equation (3 .43)] 
yields 

dF 
a dry 

(3 .5 1 )  

where we observe that F' ( rJ) is everywhere less than zero. Integrating once more, 
we find that the solution for F(ry) is 

(3 .52) 

where C is a constant of integration and rJe is given by 

(3 .53) 

This solution has a peak value at rJ 0 and decreases monotonically to zero 
as rJ 'r/e · It then increases without limit for 'fJ > rJe · The only way we can 
satisfy the far field boundary condition [Equation (3 .42)] is to use Equation (3 .52) 
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for 0 ::; ry ::; 'T/e and to use the trivial solution, F(ry) 0, for values of rJ in excess 
of "le· 

With no loss of generality, we can set 'T/e 1 .  To understand this, note that 
rJ/rJe y/ [rJet5(x )) . Hence, by setting 'T/e 1 we simply rescale the rJ coordinate 
so that t5(x) is the wake half width as originally planned. Therefore, 

3aC (3 .54) 

Finally, imposing the integral constraint, Equation (3 .44), yields an equation 
for the constant C. Perfotming the integration, we have 

0 20 
= 1  (3.55) 

Therefore, 

C =  20/3 -- 1 .491 (3.56) 

and 

(3 .57) 

If the closure coefficient a were known, our solution would be completely 
detennined at this point with Equation (3.57) specifying a2 . This is the nature 
of an incomplete turbulence model. The coefficient a is unknown because the 
mixing length [Equation (3 .34)] is unknown a priori for this flow. To complete 
the solution, we appeal to experimental data [c. f. Schlichting-Gersten ( 1 999)] , 
which show that the wake half width grows according to 

<5 (x) � 0.805 
Dx 

pU'/x, 

Comparison of Equations (3 .46) and (3 .58) shows that the value of a2 is 

a2 0.648 

The value of the coefficient a then follows from Equation (3.57), i.e., 

(3 .58) 

(3 .59) 

(3 .60) 

Collecting all of this, the final solution for the far wake, according to the 
mixing-length model is 

U(x, y) = U00 - 1 . 38 
D 2 

1 - (y/8)3/2 
px 

(3 .6 1 )  
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Figure 3 .3 :  Comparison of computed and measured far-wake velocity profiles: 
- Mixing length; • Fage and Falkner (1932); o Weygandt and JWehta (1995). 

where 6 ( x) is given by Equation (3 .58). Figure 3 .3 compares this profi1e with 
data of Fage and Falkner ( 1 932) and the slightly asymmetrical wake data of Wey
gandt and Mehta ( 1 995). As shown, the mixing-length model, once calibrated, 
does an excellent job of reproducing measured values. This solution has an in
teresting feature that we will see in many of our applications. Specifically, we 
have found a sharp turbulent/nonturbulent interface. This manifests itself in the 
nonanalytic behavior of the solution at yl6 1 ,  i.e., all derivatives of U above 
82 U I 8y2 are discontinuous at y I 6 1 .  Measurements confirm existence of such 
interfaces in all turbulent flows. However, the time-averaged interface is con
tinuous to high order, being subjected to a near-Gaussian j itter. Time averaging 
would thus smooth out the sharpness of the physical interface. Consistent with 
this smoothing, we should actually expect analytical behavior approaching the 
freestream. Hence, the mixing-length model is predicting a nonphysical feature. 

3.3.2 The Mixing Layer 

For the mixing layer, we consider two parallel streams with velocities U1 and 
U2 . By convention, the stream with velocity U1 lies above y 0 and U1 > U2 . 
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The boundary conditions are thus 

U(x, y) ----7 U1 

U(x, y) -

as 

as 

y ----7 +oo 

y ----7 -oo 

(3 .62) 

(3 .63) 

The most convenient way to solve this problem is to introduce the stream
function, 'lj;. The velocity components are given in terms of 1/J as follows. 

u -- &'1/J 
&y 

and v f)'lj_J 
= -

ox 
(3 .64) 

Equation (3 .23) is automatically satisfied and the momentum equation be-
comes 

&·l/J &2 1/J &'1/J &2 1/J a 2 &2 1/J 
oy &x&y 

-
ox f)y2 

= 
oy .emix f)y2 

The boundary conditions on 1/J are 

as y ----7 +oo 

as y ----7 - 00 

(3 .65) 

(3 .66) 

(3 .67) 

Because the velocity is obtained from the streamfunction by differentiation, 

'ljJ involves a constant of integration. For the sake of uniqueness, we can specify 
an additional boundary condition on '1/J, although at this point it is unclear where 
we should impose the extra boundaty condition. The choice will become obvious 
when we set up the similarity solution. As with the far wake, we assume 

'1/J(x , y) 'ljJ0 (x)F('ry) (3 .68) 

where the similarity variable, 7], is defined by 

1} -- yj6(x ) (3 .69) 

As can be verified by substituting Equations (3 .68) and (3 .69) into Equa
tion (3 .65), a similarity solution exists provided we choose 

(3 .70) 

(3 . 7 1 )  

where A is a constant to be determined. Using Equation (3 .34) to determine the 
mixing length, after some algebra Equation (3 .65) transforms to 

(3 .72) 
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Note that we remove the absolute value sign in Equation (3.65) because we 
expect a solution with 8Uj8y 82'1j;j8y2 > 0. As an immediate consequence, 
we can simplifY Equation (3.72). Specifically, expanding the first term leads to 
the following linear equation for the transformed streamfunction, F(rJ) . 

2 d3F 
2o: 

drJ3 + AF = 0 (3 .73) 

To determine the constant of integration in the streamfunction, our assumed 
form for 'lj; [Equation (3.68)] is consistent with letting F(rJ) vanish at 'rJ 0. 
This is known as the dividing streamline. Thus, our boundary conditions are 

dF 
1 (3 .74) as +oo -

d'r} 

dF 
U2 /U1 (3 .75) as ' -oo 

d'TJ 

F(O) 0 (3 .76) 

For simplicity, we consider the limiting case U2 -- 0. This problem can be 
solved in closed form using elementary methods. Unfortunately, the solution is 
a bit complicated. Furthermore, as with the far-wake solution, the mixing-length 
model predicts a sharp turbulent/nonturbulent interface and it becomes a rather 
difficult chore to determine a straightforward relationship between the closure 
coefficient a and the constant A, the latter being the value of y I x at the interface. 
The easier way to proceed is to solve the equation numerically for various values 
of a2 I A and compare with measurements to infer the value of a. Proceeding 
in this manner with Program MIXER (see Appendix C), optimum agreement 
between computed and measured [Liepmann and Laufer ( 1 94 7)] velocity profiles 
occurs if we choose 

and = 0.071 (Mixing Layer) (3 .77) 

This value of a is nearly identical to the value (0.070) quoted by Launder 
and Spalding ( 1 972). Figure 3 .4 compares computed and measured velocity 
profiles . The traditional definition of spreading rate, o', for the mixing layer is 
the difference between the values of ylx where (U - U2)2 I(U1 - U2)2 is 91 1 0  
and I l l  0. The values of A and a have been selected to give a spreading rate of 

(3 .78) 

which is within the range of measured values, i.e., 0. 105 to 0 . 120. While the 
computed velocity goes to zero more rapidly than measured on the low speed 
side of the mixing layer, the overall agreement between theory and experiment 
is remarkably good. 
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Figure 3.4:  Comparison of computed and measured velocity profiles for a mixing 
layer: Mixing length; c Liepmann and Laufer (194 7). 

3.3.3 The Jet 

We now analyze the plane j et, the round j et and the radial jet. Referring to 
Figures 3.2(c) and 3 .2(d), we assume the jet issues into a stagnant fluid. The 
jet entrains fluid from the surroundings and grows in width downstream of the 
origin. Equations (3 .23) and (3 .24) govern the motion with m j 0 for the 
plane j et, m 0, j 1 for the round jet and m 1 ,  j 0 for the radial jet. 
As with the far wake, we take advantage of the symmetry about the x axis and 
solve for 0 :::; y < oo .  The boundary conditions for all three cases are 

U(x, y) � 0 

au 
= 0  

8y 

as 

at 

y 00 

y 0 

(3 .79) 

(3 .80) 

To insure that the momentum in the jet is conserved, our solution must satisfy 
the following integral constraint: 

(3 .8 1 )  

where J is the momentum flux per unit mass, or, specific momentum flux. 
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To solve, we introduce the streamfunction, which can be generalized to ac
count for the axisymmetry of the round and radial jets, i.e., 

m J· u = 
a'lj; X y 
ay 

and 

The momentum equation thus becomes 

m -j a'ljJ a 
X y --

ay ax 
a . 2 y1 emix ay 

-m a'lj; X 
ay 

-

a . a'lj; -J 
ay 

y 
ay • 

m.J v = _ a'I/J X !:1 
ax 

av) a ·-j a'lj; • y 
ay ox ay 

a . a'lj; -J 
ay 

y 
ay 

(3 .82) 

(3 .83) 

Assuming a similarity solution of the form given in Equations (3 .68) and (3 .69), 
the appropriate forms for '1/Jo(x) and 8(x) are 

JAj +lxm+j+l 

2r,m+j (3 .84) 

(3.85) 

As with the mixing layer, A is the value of y I x at the interface between the 
turbulent and nonturbulent interface. We will select the value of the mixing
length constant a by trial and error to provide as close a match to measurements 
as possible. For the jet, we expect to have au I ay ::::; 0. Using this fact to replace 
the absolute value in Equation (3 .83) with a minus sign, the following ordinary 
differential equation for the transfmmed streamfunction, F( ry ) , results. 

2 . d 
a ry1 dry 

F' 
• 7]1 

2 
= 

m + j + 1  AF 
2 

F' 
• 

ryJ 

This equation must be solved subject to the following conditions. 

F(O) 0 

1 dF 
-+ 0  

ryJ d,., 

d 1 dF 
d,., ryJ d,., 

as 

as 

y - 00 

y 0 

oo (F')2 
.:___..:..._ - d1] 1 

0 ryJ 

(3 .86) 

(3 .87) 

(3 .88) 

(3 .89) 

(3 .90) 
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Doing a numerical solution of Equation (3 .86) subject to Equations (3 .87) 
through (3 .90), and comparing with experiment yields 

A 0.246 and 

A 0.233 and 

A 0.238 and 

= 0.098 (Plane Jet) 

(Round .Jet) 

(Radial .Jet) 

(3.9 1 )  

(3 .92) 

(3.93) 

Values for the mixing-length coefficient, a ,  are about 8% larger than correspond
ing values (0.090 and 0.075) quoted by Launder and Spalding ( 1 972) for plane 
and round jets respectively, which is within the bounds of experimental error. 
Values quoted in Equations (3.9 1 )  - (3.93) have been obtained using Program 
JET (see Appendix C). Figures 3 .5, 3.6 and 3 .7 compare computed and mea
sured [Bradbury ( 1 965), Heskestad ( 1 965), Wygnanski and Fiedler ( 1 969), Rodi 
( 1 975), Witze and Dwyer ( 1976)] velocity profiles for plane, round and radial 
jets. Somewhat larger discrepancies between theory and experiment are present 
for plane and radial jets than for the round jet. 

The traditional definition of spreading rate, fJ', for the jet is the value of y / x 
where the velocity is half its peak value. Experimental data indicate fJ' is between 
0 . 1 00 and 0. 1 10 for the plane jet, between 0.086 and 0.095 for the round jet and 
between 0.096 and 0. 1 1 0 for the radial jet. The mixing-length computational 
results shown in Figures 3.5,  3 .6 and 3.7 correspond to 

' 

8' 
' 0 . 100 (Plane .Jet) 
0.086 (Round .Jet) 
0. 106 (Radial .Jet) 

(3 .94) 

This concludes our application of the mixing-length model to free shear flows. 
A few final comments will help put this model into proper perspective. We 
postulated in Equation (3 .34) that the mixing length is proportional to the width of 
the shear layer. Our theory thus has a single closure coefficient, a ,  and we have 
found that it must be changed for each flow. The following values are optimum 
for the five cases considered. While we have obtained fairly close agreement 
between computed and measured velocity profiles, we have not predicted the 

. 

Flow 0: 

Far Wake 0. 1 80 
Mixing Layer 0.07 1 
Plane Jet 0.098 
Round Jet 0.080 
Radial Jet 0. 155  
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Figure 3 .5 :  Comparison of computed and measured velocity profiles for the 
plane jet: -- Mixing length; o Bradbury (1965); • Heskestad (1965). 
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Figure 3.6: Comparison of computed and measured velocity profiles for the 
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Figure 3 .7 :  Comparison of computed and measured velocity profiles for the 
radial jet: - Mixing length; o Witze and Dwyer (1976). 

spreading rate. In fact, we established the value of our closure coefficient by 
forcing agreement with the measured spreading rate. If we are only interested in 
far-wake applications or round jets we might use this model with the appropriate 
closure coefficient for a parametric study in which some flow property might be 
varied. However, we must proceed with some degree of caution knowing that 
our formulation lacks universality. 

3.4 Modern Variants of the Mixing-Length Model 

For free shear flows, we have seen that the mixing length is constant across the 
layer and proportional to the width of the layer. For flow near a solid boundary, 
turbulence behaves differently and, not too surprisingly, we must use a different 
prescription for the mixing length. Prandtl originally postulated that for flows 
near solid boundaries the mixing length is proportional to the distance from the 
surface. As we will demonstrate shortly, this postulate is consistent with the 
well-known law of the wall, which has been observed for a wide range of wall
bounded flows over roughly the nearest 1 0% of the flow width from the surface 
(see Subsection 1 . 3 .5) .  

Figure 3 .8  shows a typical velocity profile for a turbulent boundary layer. 
The quantity y+ , defined in Equation ( 1 .2 1  ), is dimensionless distance from the 
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Figure 3 .8 :  Typical velocity profile for a turbulent boundary layer. 
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surface. As discussed in Subsection 1 .3 . 5, three distinct regions are discernible, 
viz., the viscous sublayer (or "viscous wall region"), the log layer and the defect 
layer. By definition, the log layer is the portion of the boundary layer sufficiently 
close to the surface that inertial terms can be neglected yet sufficiently distant that 
the molecular, or viscous, stress is negligible compared to the Reynolds stress. 
This region typically lies between y+ 30 and y 0 . 15, where the value of y+ 
at the upper boundary is dependent upon Reynolds number. Of particular interest 
to the present discussion, the law of the wall holds in the log layer. The viscous 
sublayer is the region between the surface and the log layer. Ciose to the surface, 
the velocity varies approximately linearly with y+ , and gradually asymptotes to 
the law of the wall for large values of y+ . The defect layer lies between the log 
layer and the edge of the boundary layer. The velocity asymptotes to the law 
of the wall as y /8 0, and makes a noticeable departure from the law of the 
wall approaching the freestream. Chapter 4 discusses these three layers in great 
detail .  

From a mathematician's point of view, there are actually only two layers, 
viz., the viscous sublayer and the defect layer, and they overlap. In the parlance 
of singular-perturbation theory (Appendix B), the defect layer is the region in 
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which the outer expansion is valid, while the viscous sublayer is the region where 
the inner expansion holds. In perfonning the classical matching procedure, we 
envision the existence of an overlap region, in which both the viscous sublayer 
and defect-layer solutions are valid. In the present context, matching shows that 
U varies logarithmically with y in the overlap region, which we choose to call 
the log layer. Strictly speaking, the log layer is not a distinct layer, but rather 
the asymptotic limit of the inner and outer layers. Nevertheless, we will find the 
log layer to be useful because of the simplicity of the equations of motion in the 
layer. 

Consider an incompressible, constant-pressure boundary layer. The flow is 
governed by the standard boundary-layer equations. 

au av 
0 

ax + ay = 

U au v au a r au _ I I 
ax + 8 -- a lv a 

u v 
- y y y 

(3 .95) 

(3 .96) 

Because the convective tem1s are negligible in the log layer, the sum of the 
viscous and Reynolds shear stress must be constant. Hence, we can say 

au 
v - u1v 1 � T/ 

ay 
au 
ay 

- - - (3 .97) 
w p 

where subscript w denotes value at the wall and Ur T w / p is known as the 
friction velocity. As noted above, the Reynolds stress is much larger than the 
viscous stress in the log layer. Consequently, according to the mixing-length 
model, 

au 2 

ay 

If we say that the mixing length is given by 

,_.._, u2 
,-.._, T (3 .98) 

(3 .99) 

where K is a constant, Equation (3 .98) can be integrated immediately to yield 

Ur U � .€ny + constant 
/'\, 

(3 . 1 00) 

Finally, recall the dimensionless velocity and normal distance defined in Equa
tion ( 1 .2 1 ), which we repeat here for convenience, viz., 

+ 'UrY 
and y ___ -- (3 . 1 0 1 )  

v 
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Introducing Equation (3. 1 0 1 )  into Equation (3 . 1 00) yields the classical law of 
the wall, viz., 

1 
u+ >-.:,; -l!ny+ + c (3 . 1 02) 

"' 

The coefficient "' is known as the Karman constant, and C is a dimensionless 
constant. Coles and Hirst ( 1969) found from correlation of experimental data 
for a large number of attached, incompressible boundary layers with and without 
pressure gradient that 

"' � 0.41 

c � 5.0 

(3 . 1 03) 

(3 . 1 04) 

Note that the mixing-length fmmula, Equation (3.98) with Equation (3 .99), 
yields the same result as given by dimensional analysis alone [ cf. Equations ( 1 . 1 8) 
and ( 1 . 1 9)] .  

Using Equation (3.99) all the way from y 0 to y -- 6, the mixing-length 
model fails to provide close agreement with measured skin friction for boundary 
layers. Of course, not even Prandtl expected that !!mix "'Y throughout the 
boundary layer. Since the mixing length was first postulated, considerable effort 
has been made aimed at finding a suitable prescription for boundary-layer com
putations. Several key modifications to Equation (3 .99) have evolved, three of 
which deserve our immediate attention. See Schlichting-Gersten ( 1 999) or Hinze 
( 1 975) for a more-complete history of the mixing-length model 's evolution. 

The first key modification was devised by Van Driest ( 1 956) who proposed 
that the mixing length should be multiplied by a damping function. Specifically, 
Van Driest proposed, with some theoretical support but mainly as a good fit to 
data, that the mixing length should behave according to 

(3 . 1  05) 

where the constant At is 
A+ 26 0 (3 . 1  06) 

Aside from the primary need to improve predictive accuracy, the Van Driest 
modification improves our description of the Reynolds stress in the limit y 0. 
With l!rnix given by Equation (3 .99), the asymptotic behavior of the Reynolds 
shear stress is Txy '"" y2 as y 0. However, the no-slip boundary condition tells 
us that u' 0 at y 0. Since there is no a priori reason for au' I ay to vanish 
at the surface, we conclude that u' '"" y as y 0. Since the fluctuating velocity 
satisfies the continuity equation, we also conclude that v' 

'"" y2 . Hence, the 
Reynolds shear stress must go to zero as y3 . Results of DNS studies (Chapter 
8) indicate that indeed Txy '"" y3 as y 0. However, as noted by Hinze ( 1 975), 
the coefficient of the y3 term in a Taylor series expansion for Tx y must be very 
small as measurements are as close to Tx y '"" y4 as they are to Tx y rv y3 when 
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y 0. In the limit of small y the Van Driest mixing length implies Tx y goes to 
zero as y4 approaching the surface. 

The second key modification was made by Clauser ( 1 956) who addressed 
the proper fmm of the eddy viscosity in the defect layer. Similar to Prandtl 's  
special form of the eddy viscosity for wake flows given in Equation (3.25), 
Clauser specifies that 

(3 . 1 07) 

where vTo is the kinematic eddy viscosity in the outer part of the layer, c5* is the 
displacement thickness, Ue is the velocity at the edge of the layer, and a is a 
closure coefficient. 

In a similar vein, Escudier ( 1 966) found that predictive accuracy is improved 
by limiting the peak value of the mixing length according to 

(3 . 1 08) 

where 6 is boundary-layer thickness. Escudier's modification is similar to the 
approximation we used in analyzing free shear flows [Equation (3 .34)] , although 
the value 0.09 is half the value we found for the far wake. 

Using an eddy viscosity appropriate to wake flow in the outer portion of the 
boundary layer also improves our physical description of the turbulent boundary 
layer. Measurements indeed indicate that the turbulent boundary layer exhibits 
wake-like characteristics in the defect layer. As pointed out by Coles and Hirst 
( 1 969), "a typical boundary layer flow can be viewed as a wake-like struc
ture which is constrained by a wall." Figure 3 .9 illustrates Coles' notion that 
the defect layer resembles a wake flow while the wall constraint is felt primar
ily in the sublayer and log layer. Strictly speaking, turbulence structure differs 
a lot between a boundary layer and a wake. Hence, the terminology "wake 
component" is misleading from a conceptual point of view. Nevertheless, the 
mathematical approximations that yield accurate predictions for a wake and for 
the outer portion of a turbulent boundary layer in zero pressure gradient are 
remarkably similar. 

The third key modification is due to Corrsin and Kistler ( 1 954) and Kle
banoff ( 1954) as a corollary result of their experimental studies of intermittency. 
They found that approaching the freestream from within the boundary layer, the 
flow is not always turbulent. Rather, it is sometimes laminar and sometimes 
turbulent, i.e., it is intermittent. Their measurements indicate that for smooth 
walls, the eddy viscosity should be multiplied by 

6 -1  y 
1 + 5 .5 J (3 . 1 09) 

where c5 is the boundary-layer thickness. This provides a measure of the effect 
of intermittency on the flow. 
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Figure 3 .9 :  Coles ' description of the turbulent boundary layer. [From Coles 
and Hirst (1969) Used with permission.} 

All of these modifications have evolved as a result of the great increase in 
power and accuracy of computing equipment and measurement techniques since 
the 1 940's. The next two subsections introduce the two most noteworthy models 
in use today that are based on the mixing-length concept. Both include variants 
of the Van Driest, Clauser, and Klebanoff modifications. Although it is not used 
in these two models, the Escudier modification has also enjoyed great popularity. 

As a final c01mnent, we have introduced two new closure coefficients, A;t and 
o�, and an empirical function, F K l e b ·  As we continue in our journey through this 
book, we will find that the number of such coefficients and functions increases 
as we attempt to describe more and more features of the turbulence. 

3.4.1 Cebeci-Smith Model 

The Cebeci-Smith model [Smith and Cebeci ( 1 967)] is a two-layer model with 
Vr given by separate expressions in each layer. In terms of the normal distance 
from the nearest solid boundary, y, the eddy viscosity is 

Vr; ,  Y :::; Yrn 
Vro ,  Y > Yrn 

(3 . 1 1 0) 

where Ym is the smallest value of y for which Vr; Vro . The values of Vr in 
the inner layer, Vr; , and the outer layer, Vr0 , are computed as follows. 
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Inner Layer: 

Outer layer: 

Closure Coefficients: 

0.0168, 
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au 2 

oy 
+ 

av 2 1/2 

ox 

dPjdx -112 

26 1 + y 2 pu" 

(3.111) 

(3.112) 

(3.113) 

(3.114) 

The function F Kleb is the Klebanoff intermittency function given by Equa
tion (3.109), Ue is boundary-layer edge velocity, and 8Z is the velocity thickness 
defined by 

8* = 
v 

0 

8 
(1- U /Ue) dy (3.115) 

Note that velocity thickness is identical to displacement thickness for incom
pressible flow. The coefficient A+ differs from Van Driest ' s  value to improve 
predictive accuracy for boundary layers with nonzero pressure gradient.4 The 
prescription for Vri above is appropriate only for two-dimensional flows; for 
three-dimensi onal flows, it should be proportional to a quantity such as the mag
nitude of the vorticity vector. There are many other subtle modifications to 
this model for specialized applications including surface mass transfer, stream
line curvature, surface roughness, low Reynolds number, etc. Cebeci and Smith 
(1974) give complete details of their model with all of its variations. 

The Cebeci-Smith model is especially elegant and easy to implement. Most 
of the computational effort, relative to a laminar case, goes into computing the 
velocity thickness. This quantity is readily available in boundary-layer computa
tions so that a laminar-flow program can usually be converted to a turbulent-flow 
program with just a few extra lines of instructions. Figure 3 . 1 0  illustrates a typ
ical eddy viscosity profile using Vri between y 0 and y Yrn, and Vr0 for 
the rest of the layer. At Reynolds numbers typical of fully-developed turbulence, 
matching between inner and outer layers occurs well into the log layer. 

4 However, the Van Driest value should be used in fully-developed pipe flow, for which the dP j dx 
correction yields imaginary A+. 
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Figure 3 . 1 0 :  Eddy viscosity for the Cebeci-Sm ith model. 

8 1  

We can estimate the value of y� as follows. Since we expect the matching 
point to lie in the log layer, the exponential tem1 in the Van Driest damping 
function will be negligible. Also, the law of the wall [Equation (3 . 1 00)] tells us 
8Uj8y � u7/(Ky). Thus, 

(3 . 1 1 6) 

Since the matching point also lies close enough to the surface that we can say 
y /8 « 1, the Klebanoff intermittency function will be close to one so that (with 
8� 8*): 

Vr0 � o:Ue8* o:v Reo* 
Hence, equating Vr; and Vr0, we find 

(3 . 1 17) 

(3 . 1 1 8) 

Assuming a typical turbulent boundary layer for which Reo* "' 104 , the matching 
point will lie at y� "' 420. 

3.4.2 Baldwin-Lomax Model 

The Baldwin-Lomax model [Baldwin and Lomax (1 978)] was formulated for 
use in computations where boundary-layer properties such as 8, 8� and Ue are 
difficult to determine. This situation often arises in numerical simulation of 
separated flows, especially for flows with shock waves. Like the Cebeci-Smith 
model, this is a two-layer model. The eddy viscosity is given by Equation (3 . 11 0) , 
and the inner and outer layer viscosities are as follows. 
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Inner Layer: 

Outer Layer: 

1 -y+jA+ 
- e o 

Fmax = .!. max(lmix lw i) 
K, y 

(3.119) 

(3.120) 

(3.121) 

(3.122) 

(3.123) 

where Ymax is the value of y at which lmix lwl achieves its maximum value. 

Closure Coefficients:5 

K, 0.40, 
Ccp 1.6, 

a 0.0168, 
CKleb -- 0.3, 

A+= 26 0 

Cwk 1 (3.124) 

The function FKteb is Klebanoff's intermittency function [Equation (3.109)] with 
t5 replaced by Ymax I C Kleb. and w is the magnitude of the vorticity vector, i.e., 

av au 2 aw av 2 

w= --:-- - -:--ax ay + --::-- - -:::--ay az + 
au aw 2 1/2 

--:-- - --::--az ax (3.125) 

for fully three-dimensional flows. This simplifies to w laV I ax - au I ayl 
in a two-dimensional flow. If the boundary layer approximations are used in a 
two-dimensional flow, then w 1 au I ayl .  

U dif is the maximum value of U for boundary layers. For free shear layers, 
U dif is the difference between the maximum velocity in the layer and the value 
of U at y Ymax. For more general flows, it is defined by 

(3.126) max Y=Yrnax 

The primary difference between the Baldwin-Lomax and Cebeci-Smith mod
els is in the outer layer, where the product CcpFwake replaces Ue6�. To avoid the 

5Personal communication between Dr. Lomax and the author of this text has determined that the 
original Baldwin-Lomax paper inadvertently: (a) assigns a value of Cwk = 0.25; (b) defines Udif 
as the difference between the maximum and minimum velocities. 



3.4. MODERN VARIANTS OF THE MIXING-LENGTH MODEL 8 3  

need to locate the boundary-layer edge, the Baldwin-Lomax model establishes 
the outer-layer length scale in terms of the vorticity in the layer. On the one hand, 
in using Fwake YrnaxFrnax. we in effect replace aZ by Y�axw/Ue. On the 
other hand, using F wake CwkYrnax U'jif / F rnax effectively replaces the shear 
layer width, a, in Prandtl ' s  eddy-viscosity model [Equation (3 .25)] by Udit/ iwi. 

For boundary-layer flows, there is very little difference between the predic
tions of the Baldwin-Lomax and Cebeci-Smith models. This indicates that the 
prescription for determining the outer-layer length scale based on the vorticity 
and distance from the surface [cf. Equations (3 . 1 22) and (3 . 1 23)] is entirely 
equivalent to the velocity thickness, a;. For more-complicated flows, such as 
those involving separation, the Baldwin-Lomax model provides an outer length 
scale that is well defined for most flows. By contrast, a;, will generally be 
negative for a separated flow, and thus is an unsuitable length scale. 

However, the Baldwin-Lomax model prescription for computing an outer 
length scale can fail when the vorticity is nonvanishing above the boundary 
layer. This will occur, for example, on slender bodies at angle of attack, where 
regions of crossflow separation dominate [e.g., Degani and Schiff (1 986) or Gee, 
Cummings and Schiff ( 1992)] . In this type of flow, the function F (y) can 
exhibit more than one relative maximum as illustrated in Figure 3 . 1 1 .  Using a 
peak beyond the viscous region can lead to nonphysically large eddy viscosity 
values that lead to gross distortion of the computed flowfield. To eliminate this 
problem, Degani and Schiff ( 1986) have devised a procedure that automatically 
selects the peak value of F(y) within the viscous region. While the Degani
Schiff modification improves model predictions for separated flows, we wilt 
see in Section 3 .6 that neither the Cebeci-Smith nor the Baldwin-Lomax model 
embodies a sufficient physical foundation to warrant application to such flows. 

y 

Yrnax ---------

Frnax F(y) 
(a) 

y 

Yrnax ---------

Frnax F(y) 
(b) 

Figure 3. 1 1 :  The function F(y) for: (a) a conventional boundary layer; (b) a 
boundary layer with non zero freestream vort icity. 



84 CHAPTER 3. ALGEBRAIC MODELS 

Thus, this type of adjustment to the model reflects no added physical insight, but 
rather stands as a purely empirical correction. 

As a final comment, while Equation (3 . 124) implies this model has six closure 
coefficients, there are actually only five. The coefficient Ccp appears only in 
Equation (3. 1 2 1 ) where it is multiplied by a, so aCcp is actually a single constant. 

3.5 Application to Wall-Bounded Flo,vs 

\Ve turn our attention now to application of the Cebeci-Smith and Baldwin
Lomax models to wall-bounded flows, i.e., to flows with a solid boundary. The 
no-slip boundary condition must be enforced for wall-bounded flows, and we 
expect to find a viscous layer similar to that depicted in Figure 3.8 .  This section 
first examines two internal flows, viz., channel flow and pipe flow. Then, we 
consider external flows, i.e., boundary layers growing in a semi-infinite medium. 

3.5.1 Channel and Pipe Flow 

Like the free shear flow applications of Section 3 .3 , constant cross-section chan
nel and pipe flow are excellent building-block cases for testing a turbulence 
model. Although we have the added complication of a solid boundary, the mo
tion can be described with ordinary differential equations and is therefore easy 
to analyze mathematically. Also, experimental data are abundant for these flows. 

The classical problems of flow in a channel, or duct, and a pipe are the ideal
ized case of an infinitely long channel or pipe (Figure 3 . 1 2). This approximation 
is appropriate provided we are not too close to the inlet of the channel/pipe so 

- - - -

-- --- -- - --

/ 

/ 
Inlet • 

regiOn 

_,...-- Boundary-layer edge 

:::::=----
X 

Fully-developed --j 
flow 

Figure 3 . 12 : Fully- de velope d flow in a pipe or channel with the vertical scale 

magn ified. 
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that the flow has become fully-developed. For turbulent flow in a pipe, flow 
asymptotes to full development at a distance fe downstream of the inlet given 
approximately by [ cf. Schlichting-Gersten ( 1 999)] 

(3 . 1 27) 

where ReD is Reynolds number based on the pipe diameter (or channel half 
height). Thus, for example, the entrance length, fe, for flow in a pipe with 
ReD 10 5 is about 30 pipe diameters. Because, by definition, properties no 
longer vary with distance along the channel/pipe, we conclude innnediately that 

au 
0 

ox = (3 . 1 28)  

Denoting distance from the center of the channel or pipe by r, conservation 
of mass is 

ox rJ 8r 
0 (3 . 1 29) 

where j 0 for channel flow and j -- 1 for pipe flow. In light of Equa
tion (3 . 1 28), we see that V does not vary across the channel/pipe. Since V 
must vanish at the channel/pipe walls, we conclude that V 0 throughout the 
fully-developed region. Hence, for both channel and pipe flow, the inertial terms 
are exactly zero, so that the momentum equation simplifies to 

dP 1 d . 
0= - + . -- rJ 

dx rJ dr 
dU 

J1 - rrn'v' 
dr 

(3 . 1 30) 

In fully-developed flow pressure gradient must be independent of x ,  and if V 0, 
it is also exactly independent of r. Hence, we can integrate once to obtain 

dU r dP 
J1 - pu'v' 

dr j + 1 dx 
(3 . 1 3 1 )  

Now, the Reynolds stress vanishes at the channel/pipe walls, and this estab
lishes a direct relationship between the pressure gradient and the shear stress at 
the walls. If we let R denote the half-height of the channel or the radius of the 
pipe, applying Equation (3 . 1 3 1 )  at r R tells us that 

R dP 
j + 1 dx 

(3 . 1 32) 

Hence, introducing the friction velocity, un the momentum equation for chan
nel/pipe flow simplifies to the following first-order, ordinary differential equation. 

dU r 
J1 - pu'v' 

-- -pu2-= 
dr T R (3 . 1 33 )  



• 
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Noting that both channel and pipe flow are symmetric about the centerline, 
we can obtain the complete solution by solving Equation (3 . 1 33) with r varying 
between 0 and R. It is more convenient however to define y as the distance from 
the wall so that 

y - R-r (3 . 1 34) 

Hence, representing the Reynolds stress in terms of the eddy viscosity, 
- pu'v' -- /-lTdU jdy, we arrive at the following equation for the velocity. 

• 
t.e., 

dU 
(J.t + /-lT) dy 

2 
1 

y 
puT - R (3 . 135)  

Finally, we introduce sublayer-scaled coordinates, u+ and y+, from Equa-
tion (3 . 1  0 1  ), as well as J.ti: J.lT / f-l· This results in the dimensionless form of 
the momentum equation for channel flow and pipe flow, viz., 

where 

y+ 
1- R+ 

(3 . 1 36) 

(3 . 1 37) 

Equation (3 . 1 36) must be solved subject to the no-slip boundary condition at the 
channel/pipe wall. Thus, we require 

(3 . 1 38) 

At first glance, this appears to be a standard initial-value problem that can, in 
principle, be solved using an integration scheme such as the Runge-Kutta method. 
However, the problem is a bit more difficult, and for both the Cebeci-Smith and 
Baldwin-Lomax models, the problem must be solved iteratively. That is, for the 
Cebeci-Smith model, we don't know Ue and 6� a priori. Similarly, with the 
Baldwin-Lomax model, we don't know the values of Udif and Yrnax until we 
have determined the entire velocity profile. This is not a serious complication 
however, and the solution converges after just a few iterations. 

The equations for channel and pipe flow can be conveniently solved using 
a standard over-relaxation iterative procedure. Program PIPE (see Appendix C) 
yields a numerical solution for several turbulence models, including the Cebeci
Smith and Baldwin-Lomax models. 

Figure 3 . 1 3  compares computed two-dimensional channel-flow profiles with 
Direct Numerical Simulation (DNS) results of Mansour, Kim and Moin ( 1 988) 
for Reynolds number based on channel height and average velocity of 1 3 750. 
As shown, the Cebeci-Smith and Baldwin-Lomax velocity profiles are within 
8% and 5%, respectively, of the DNS profiles. Computed Reynolds shear stress 
profiles for both models differ from the DNS profiles by no more than 2%. 
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Computed skin friction for both models differs by less than 5% from Halleen 
and Johnston's (1967) correlation of experimental data, viz., 

CJ 0.0706Re�1!4 (3 . 1 39) 

where the skin friction and Reynolds number are based on the average velocity 
across the channel and the channel height H, i.e., Cf Tw/(�pu;vg) and on 
Reynolds number, ReH Uav9H/v. 

yj(H/2) 
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Figure 3. 1 3 :  Comparison of computed and measured channel-flow properties , 
ReH = 13750. Baldwin-Lom ax model;- - - Cebeci-Smith model; o Mansour 
et al. (DNS) ; o Halleen-Johnston correlation . 
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Figure 3 . 14  compares model predicted pipe-flow properties with the experi
mental data of Laufer (1 952) for Reynolds number based on pipe diameter and 
average velocity of 40000. Baldwin-Lomax velocity and Reynolds shear stress 
differ from measured values by no more than 3%. As with channel flow, the 
Cebeci-Smith velocity shows greater differences (8%) from the data, while the 
Reynolds shear stress values are very close to those predicted by the Baldwin
Lomax model. 
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Figure 3. 1 4: Comparison of computed and measured pipe-flow properties, 

Rev = 40000. Baldwin-Lomax model; - - - Cebeci-Smith model; o Laufer; 

o Pra ndtl correlation. 
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Computed skin friction is within 8% and 1 %  for the Cebeci-Smith and 
Baldwin-Lomax models, respectively, of Prandtl 's  universal law of friction for 
smooth pipes [see Schlichting-Gersten ( 1 999)] given by 

1 
CJ 

4log10 (2ReD Cf ) - 1.6 (3 . 1 40) 

where CJ and ReD are based on average velocity across the pipe and pipe diam
eter, D. 

These computations illustrate that subtle differences in the Reynolds shear 
stress can lead to much larger differences in velocity for pipe and channel flow. 
This means we must determine the Reynolds shear stress very accurately in order 
to obtain accurate velocity profiles. To some extent this seems odd. The Reynolds 
stress is a higher-order correlation while velocity is a simple time average. Our 
natural expectation is for the mean velocity to be determined with great precision 
while higher-order quantities such as Reynolds stress are determined with a bit 
less precision. The dilemma appears to stem from the fact that we need the same 
precision in Txy as in &U j &y. As we advance to more complicated turbulence 
models, we will sec this accuracy dilemma repeated, although generally with less 
severity. As applications go, channel and pipe flow are not very forgiving. 

Interestingly, Figure 3 . 1 4 shows that for the higher Reynolds number pipe 
flow, higher velocity is predicted with the Cebeci-Smith model than with the 
Baldwin-Lomax model. The opposite is true for the lower Reynolds number 
channel-flow case. Cebeci and Smith (1 974) have devised low-Reynolds-number 
corrections for their model which, presumably, would reduce the differences from 
the DNS channel-flow results. 

3.5.2 Boundary Layers 

In general, for a typical boundary layer, we must account for pressure gradient. 
Ignoring effects of normal Reynolds stresses and introducing the eddy viscos
ity to determine the Reynolds shear stress, the two-dimensional (j 0) and 
axisymmetric (j 1 )  boundary-layer equations are as follows. 

&x yJ &y 

&U &U 1dP 1 8 
U + V = -- + __,..--

ax &y p dx yj &y 

. &U 
y1 (v + Vr) 

&y 

(3 . 14 1 )  

(3 .1 42) 

The appropriate boundary conditions follow from the no-slip condition at the 
surface and from insisting that U Ue as we approach the boundary-layer edge. 
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Figure 3.15: Comparison of computed and correlated shape factor and skin 
friction for flat-plate bounda ry layer flow; 0 Coles; Cebeci .. Smith model. 
[From Kline et a/. (19 69) Used with permission.} 

Consequently, we must solve Equations (3.141) and (3.142) subject to 

U(x, 0) 
V(x, 0) 
U(x, y) 

0 
0 
Ue(x) 

where c5(x) is the boundary-layer thickness. 

as y- o(x) 
(3.143) 

The Cebeci-Smith model has been applied to a wide range of boundary
layer flows and has enjoyed a great deal of success. Figure 3.15, for example, 
compares computed skin friction, c f, and shape factor, H, for a constant-pressure 
(flat-plate) boundary layer with Coles' [Coles and Hirst (1969)] correlation of 
experimental data. Results are expressed as functions of Reynolds number based 
on momentum thickness, Reo. As shown, model predictions virtually duplicate 
correlated values. 

The model remains reasonably accurate for favorable pressure gradient and 
for mild adverse pressure gradient. Because the model has been fine tuned 
for boundary-layer flows, differences between computed and measured velocity 
profiles generally are small. Typically, integral parameters such as momentum 
thickness and shape factor show less than 10% differences from measured values. 
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Figure 3 . 1 6  compares computed and measured boundary-layer properties for 
two of the flows considered in the 1 968 AFOSR-IFP-Stanford Conference on the 
Computation of Turbulent Boundary Layers (this conference is often referred to 
colloquially as Stanford Olympics 1). For both cases, computed and measured 
velocity profiles are nearly identical . Flow 3 1 00 is two dimensional with a mild 
favorable pressure gradient. Despite the close agreement in velocity profiles 
overall, differences in shape factor are between 8% and 1 0%. Flow 3 600 is 
axisymmetric with an adverse pressure gradient. For this flow, shape factors 
differ by less than 5%.  The Baldwin-Lomax model also closely reproduces 
measured flow properties for these types of boundary layers. 
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Figure 3 . 1 6: Comparison of comp uted and meas ured bo undary layer velocity 
profiles and shape factor for flows with non zero press ure gradient; Cebeci-Smith 
model. [From Kline et al. (1969) Used with permission.] 

Figure 3 . 1 7  compares computed and measured skin friction for sixteen in
compressible boundary layers subjected to favorable, zero and adverse pressure 
gradients .  For both models, computed and measured CJ generally differ by less 
than 1 0%. Fifteen of the sixteen cases considered are from Stanford Olympics I. 
The lone exception is Flow 0 1 4 1 ,  which corresponds to a boundary layer in an 
increasingly adverse pressure gradient. This flow has been studied experimen
tally by Samuel and Joubert [see Kline et al. ( 198 1 )] .  It was a key boundary-layer 
case included in the 1 980-8 1 AFOSR-HTTM-Stanford Conference on Complex 
Turbulent Flows (known colloquially as Stanford Olympics II). Measurements 
for all cases satisfy the momentum-integral equation, thus assuring their two
dimensionality and accuracy of the experiments. 
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Table 3.1  summarizes the difference between computed and measured c1 at 
the final station for the various pressure gradients. This is a sensible measure of 
the overall accuracy as all transients have settled out, and, with the exception of 
Flow 2400, the pressure gradient is strongest at the end of the computation. The 
overall average difference for the 1 6  cases is 9% for the Baldwin-Lomax model 
and 1 1 %  for the Cebeci-Smith model. 

Table 3 . 1 :  Diflerences Between Computed and Measured Skin Friction . 

I Pressure Gradient I Flows - I Baldwin-Lomax I Cebeci-Smith I 
r Favorable ' 1400, 1 300,2700,6300 7% 5% 

Mild Adverse 1 1 00,2 1 00,2500,4800 6% 7% 
Moderate Adverse 2400,2600,3300,4500 1 0% 15% 
Strong Adverse 0 1 4 1 , 1 200,4400,5300 14% 1 6% 
All - 9% 1 1 % 

One noteworthy case is Flow 3300 of the 1 968 AFOSR-IFP-Stanford Confer
ence on the Computation of Turbulent Boundary Layers. This flow, also known 
as Bradshaw Flow C, has a strongly adverse pressure gradient that is gradually 
relaxed and corresponds to an experiment performed by Bradshaw (1 969). It was 
generally regarded as one of the most difficult to predict of all flows considered 
in the Conference. As shown, both models predict skin friction very close to the 
measured value. The Cebeci-Smith value for CJ at the final station (x = 7 ft.) 
is 6% lower than the measured value. The Baldwin-Lomax value exceeds the 
measured value at x = 7 ft. by 3%. 

A second case worthy of mention is Flow 0 1 4 1  of the 1980-8 1 AFOSR
HTTM-Stanford Conference on Complex Turbulent Flows. The close agreement 
between theory and experiment for this flow is remarkable. The Cebeci-Smith 
and Baldwin-Lomax values for CJ at x � 3 m. are within 14% and 2% of the 
measured value, respectively. This boundary layer was presumed to be a "simple" 
flow for Conference participants. However, as we will discuss further in Chapter 
4, it proved to be the Achilles heel of the best turbulence models of the day. 

The only case the models fail to predict accurately is Flow 5300, which is 
known as the Stratford ( 1 959) "incipient-separation" flow. The boundary layer 
experiences an adverse pressure gradient that is of sufficient strength to drive it 
to the brink of separation. The Cebeci-Smith model's skin friction at the final 
station (x 4.1 ft.) is 58% higher than measured. The Baldwin-Lomax model 
predicts boundary-layer separation at x � 3 ft. 

As a final comment, all sixteen computations have been done using Program 
EDDYBL, a boundary-layer program suitable for two-dimensional and axisym
metric flows. The companion CD provided with this book includes the program 
and detailed user's information (see Appendix C). 
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3.6 Separated Flows 

All of the applications in the preceding section are for attached boundary layers. 
We tum now to flows having an adverse pressure gradient of sufficient strength 
to cause the boundary layer to separate. Separation occurs in many practical 
applications including stalled airfoils, flow near the stem of a ship, flow through 
a diffuser, etc. Engineering design would be greatly enhanced if our turbulence 
model were a reliable analytical tool for predicting separation and its effect on 
surface pressure, skin friction and heat transfer. Unfortunately, algebraic models 
are quite unreliable for separated flows. 

When a boundary layer separates, the streamlines are no longer nearly parallel 
to the surface as they are for attached boundary layers. We must solve the full 
Reynolds-averaged Navier-Stokes equation [Equation (2.24)], which includes all 
components of the Reynolds-stress tensor. In analogy to Stokes hypothesis for 
laminar flow, we set 

Tij 2vrSij (3 . 144) 

where Sij is the mean strain-rate tensor defined by 

(3 . 145)  

Figure 3 . 1 8 is typical of separated-flow results for an algebraic model. The 
flow is axisymmetric and has a strong adverse pressure gradient. The experiment 
was conducted by Driver ( 199 1 ). The computation was done with Program 
EDDY2C (see Appendix C). Inspection of the skin friction shows that the 
Baldwin-Lomax model yields a separation bubble nearly twice as long as the 
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Figure 3 . 1 8: Computed and measured flow properties for Driver's separated 
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experimentally observed bubble. The corresponding rise in pressure over the 
separation region is 1 5 % to 20% higher than measured. As noted by Menter 
( 1 992b), the Cebeci-Smith model yields similar results. 

It is not surprising that a turbulence model devoid of any information about 
flow history will perform poorly for separated flows. On the one hand, the 
mean strain-rate tensor undergoes rapid changes in a separated flow associated 
with the curved streamlines over and within the separation bubble. On the other 
hand, the turbulence adjusts to changes in the flow on a time scale unrelated 
to the mean rate of strain. Rotta ( 1 962), for example, concludes from analysis 
of experimental data that when a turbulent boundary layer is perturbed from its 
equilibrium state, a new equilibrium state is not attained for at least 1 0  boundary
layer thicknesses downstream of the perturbation. In other words, separated flows 
are very much out of "equilibrium." The Boussinesq approximation, along with 
all the "equilibrium" approximations implicit in an algebraic model, can hardly 
be expected to provide an accurate description for separated flows. 

Attempts have been made to remedy the problem of poor separated-flow 
predictions with the Cebeci-Smith model . Shang and Hankey ( 1 975) introduced 
the notion of a relaxation length, L, to account for upstream turbulence history 
effects. They introduced what they called a relaxation eddy· viscosity model 
and determined the eddy viscosity as follows. 

(3. 146) 

The quantity f-lreq pvr.q denotes the equilibrium eddy viscosity correspond
ing to the value given by Equations (3.1 1 0) through (3 . 1 1 3), while J-1r1 is the 
value of the eddy viscosity at a reference point, x XI, upstream of the sep
aration region. Typically, the relaxation length is about 56" I, where J"I is the 
boundary-layer thickness at x XI. The principal effect of Equation (3 . 1 46) 
is to reduce the Reynolds stress from the "equilibrium" value predicted by the 
Cebeci-Smith model. This mimics the experimental observation that the Reynolds 
stress remains nearly frozen at its initial value while it is being convected along 
streamlines in the separation region, and approaches a new equilibrium state 
exponentially. 

In a similar vein, Hung (1 976) proposed a differential form of Shang and 
Hankey's Equation (3 . 1 46), viz., 

(3 . 147) 

This equation is very similar to the earlier proposal of Reyhner [Kline et al. 
( 1 969)] .  Hung ( 1 976) exercised these relaxation models in several supersonic 
shock-separated flows. He was able to force close agreement between com
puted and measured locations of the separation point and the surface-pressure 
distribution. However, he found that these improvements come at the. expense 



96 CHAPTER 3. ALGEBRAIC MODELS 

of increased discrepancies between computed and measured skin friction, heat 
transfer and reattachment-point location. 

3. 7 The 1/2-Equation Model 

Johnson and King ( 1 985) [see also Johnson ( 1 987) and Johnson and Coakley 
( 1 990)] have devised a "non-equilibrium" version of the algebraic model. Their 
starting point is a so-called "equilibrium" algebraic model in which the eddy 
viscosity is 

/-LT /-LT0 tanh(/-LTj /-LTJ (3 . 148) 

where /-LTi and /-LTo represent inner-layer and outer-layer eddy viscosity, respec
tively. The hyperbolic tangent is used to eliminate the discontinuity in O/-LT / 8y 
attending the use of Equation (3 . 1 1 0).  

Inner Layer: 
The inner-layer viscosity, /-LTi, is similar to the form used in the Cebeci-Smith 

and Baldwin-Lomax models. However, the dependence on velocity gradient has 
been replaced by explicit dependence on distance from the surface, y, and two 
primary velocity scales, Ur and Um, as follows: 

UvY/V /-LTi - p 1- exp - - A+ 
2 

VPUs (1- 'Y2) Tw + 'Y2 Tm 
')'2 tanh(y/ Lc) 

1'\,Ym, Ym/b :S Cl/1'\, 
C1b', Ym/b > Cl/ /'\, 

Urn VTm/Pm 
Uv max[um , ur ] 

(3 . 1 49) 

(3 . 1 50) 

(3. 1 5 1 )  

(3 . 1 52) 

(3 . 1 53)  

(3 . 1 54) 

(3 . 1 55) 

where subscript m denotes the value at the point, y Ym. at which the Reynolds 
shear stress, PTxy. assumes its maximum value denoted by Tm (PTxy)max· 
Additionally Ur is the conventional friction velocity and Pw is the density at the 
surface ,  y 0. In its original form, this model used only the velocity scale um 
in Equation (3 . 1 49). This scale proved to provide better predictions of velocity 
profile shape for separated flows than the velocity-gradient prescription of Prandtl 
[Equation (3.1 5)]. Later, the secondary velocity scales u8 and uv were added to 
improve predictions for reattaching flows and for flows with nontrivial effects 
of compressibility. 



3. 7. THE 112-EQUAT/ON MODEL 

Outer Layer: 

97 

The "non-equilibrium" feature of the model comes in through the appearance 
of a "nonequilibrium parameter," o-(x), so that: 

(3 . 1 56) 

Comparison of this equation with Equation (3 . 1 1 3) shows that the outer-layer vis
cosity, f-lro pvro, is equal to that used in the Cebeci-Smith model multiplied by 
O'(x ) . The Johnson-King model solves the following ordinary differential equa
tion for the maximum Reynolds shear stress, Tm, in terms of Um Jr�/Pm· 

3 2 C 
Um 

um- dif 
c � 2U- Ym 

1- o-ll2(x) 

(3 . 1 57) 
where Um is mean velocity and (um)eq is the value ofum according to the "equi
librium" algebraic model [o-(x) 1] .  The first term on the right-hand side of 
Equation (3 . 1 57) is reminiscent of Hung's  relaxation model [Equation (3 . 147)] . 
The second term is an estimate of the effect of turbulent diffusion on the Reynolds 
shear stress. Equation (3 . 1 57) is solved along with the Reynolds-averaged equa
tions to determine Tm. As the solution proceeds, the coefficient o-(x) is deter
mined so that the maximum Reynolds shear stress is given by 

au av 
-:--- + -:--8y 8x (3 .1 58) 

m 

That is, the f-.lr distribution is adjusted to agree with Tm. In using this model, 
computations must be done iteratively since o-(x) is unknown a priori, wherefore 
the value from a previous iteration or an extrapolated value must be used in 
solving Equation (3 . 1 57) for T m. 

Closure Coefficients: 

= 0.40, a 0.0168, A+ 17 
al 0.25, cl 0.09, c2 0.70 (3 . 1 59) 
cdif 0.50 for O'(x) � 1 ;  0 otherwise 

The general idea of this model is that the Reynolds shear stress adjusts 
to departures from "equilibrium" at a rate different from that predicted by the 
algebraic model. The ordinary differential equation for Um is used to account 
for the difference in rates. Because this equation is an ordinary, as opposed to a 
partial, differential equation, the turbulence community has chosen the curious 
terminology 1/2-Equation Model to describe this model. It is unclear whether 
this means it has half the number of dimensions (but then, it would have to be a 
1 /3-Equation Model for three-dimensional applications) or if partial differential 
equations are twice as hard to solve as ordinary differential equations. 
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Figure 3 .1 9  compares computed and measured skin friction for the sixteen 
boundary-layer flows of Stanford Olympics I and II discussed earlier. As with 
the algebraic models, the computations have been done using Program EDDYBL 
(see Appendix C). Note that predicted c1 for the constant-pressure case (Flow 
1 400) is 5 %  less than measured values. This is a direct consequence of using 
Equation (3 . 1 48). As can be readily verified, using Equation (3 . 1 1 0), computed 
skin friction matches measured values almost exactly. 

As summarized in Table 3 .2, overall differences between computed and mea
sured c 1 are somewhat larger than corresponding differences for the Baldwin
Lomax model. The overall average difference at the final station for the flows 
is 20% as compared to 9% for the Baldwin-Lomax model (and 1 1 %  for the 
Cebeci-Smith model). 

Table 3 .2 :  Differences Between Comp uted and Measured Skin Friction. 

[ Pressure Gradient I Flows I Johnson-King I Baldwin-Lomax I 
Favorable 1 400, 1 3 00,2700,6300 7% 7% 
Mild Adverse 1 1 00,2 1 00,2500,4800 1 1 % 6% 
Moderate Adverse 2400,2600,3300,4500 1 3% 1 0% 
Strong Adverse 0 1 4 1 , 1 200,4400,5300 50% 1 4% 
All - 20% 9% 

As noted earlier, Bradshaw Flow C (Flow 3300) was one of the most diffi
cult cases in the 1 968 AFOSR-IFP-Stanford Conference on the Computation of 
Turbulent Boundary Layers. The Johnson-King model fares rather poorly on this 
case with computed skin friction 19% higher than the measured value at the fi
nal station. Recall that the Cebeci-Smith and Baldwin-Lomax model predictions 
were within 6% and 3% of the measured value, respectively. 

Also, for the Samuel-Joube1i increasingly adverse pressure gradient case 
(Flow 014 1  ), the computed skin friction is 13% higher than the measured value. 
By contrast, the Cebeci-Smith and Baldwin-Lomax models predict CJ 14% and 
2 %  lower, respectively. 

As a bit of a surprise, while the predicted boundary layer remains attached for 
the Stratford incipient-separation case (Flow 5300), the computed skin friction is 
more than four times the measured value. Results obtained with the Cebeci-Smith 
model (see Figure 3 . 1 7) are quite a bit closer to measurements. 

Although the differences are somewhat larger than those of the algebraic mod
els, inspection of Figure 3 . 1 9  shows that, with the exception of Flow 5300, the 
accuracy is satisfactory for most engineering applications. The differences can 
probably be reduced to the same levels as for the Baldwin-Lomax and Cebeci
Smith models by either recalibrating the closure coefficients or by using Equa
tion (3. 1 1 0) instead of Equation (3 . 1 48). 
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Figure 3 . 1 9: Computed and measured skin friction for boundary layers subjected 
to a pressure gradient .  Top row - favo rable \1 p; next to top row - mild adverse 
\1 p; next to bottom row - moderate adverse \1 p; bottom row - strong adverse 
\1 p. Johnson- King model; o measured. 
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Menter ( 1 992b) has applied the Johnson-King model to Driver' s  ( 1 99 1 )  sepa
rated flow. Figure 3 .20 compares computed and measured values; results for the 
Baldwin-Lomax model are also included. As shown, the Johnson-King model 
predictions are much closer to measurements, most notably in the size of the 
separation region. 

103Cfoo Cv 
2 - ------------� .8 --- --- ------

\ 

1 

\ 
I 
\ 
I 
• 
• 

• 

i 
' ' . ' ' ' . ' . ' 

• 0 ' . '' 
� 0 ," 

' 

' 
0 ..... ..... ,, _____ \. __ .. ..... .. 0 ....... ""·-·-··· .............. 0?, __ ...... -:-..:: : .... ··· --· ........... . ' 0 ..... ,_ ... 

, .... ____ ... 
-

- 1  
- 2  0 2 x/D 

' .4 

0 . · -

-- ------' 
/ 

. . . . . . ' ' "  . .  

-.4 ------------
4 -4 • 

-2 0 2 4 x/D 

Figure 3.20: Computed and measured flow prop erti es for Driver's separated 
flow; Johnson- King model; - - - Baldwin-Lom ax; o Driver. 

3.8 Range of Applicability 

Algebraic models are the simplest and easiest to implement of all turbulence 
models. They are conceptually very simple and rarely cause unexpected numer
ical difficulties. Because algebraic models are so easy to use, they should be 
replaced only where demonstrably superior alternatives are available. 

The user must always be aware of the issue of incompleteness. These models 
will work well only for the flows for which they have been fine tuned. There is 
very little hope of extrapolating beyond the established data base for which an 
algebraic model is calibrated. We need only recall that for the five free shear 
flows considered in Section 3 .3, five different values for the mixing length are 
needed and none of these lengths is appropriate for wall-bounded flows! 

On balance, both the Cebeci-Smith and Baldwin-Lomax models faithfully re
produce skin friction and velocity profiles for incompressible turbulent boundary 
layers provided the pressure gradient is not too strong. Neither model is clearly 
superior to the other: the accuracy level is about the same for both. The chief 
virtue of the Baldwin-Lomax model over the Cebeci-Smith model is its indepen
dence of properties such as 8� that can often be difficult to define accurately in 
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complex flows. Its other differences from the Cebeci-Smith model are probably 
accidental. However, neither model is reliable for separated flows. Despite this 
well-known limitation, many incautious researchers have applied the Baldwin
Lomax model to extraordinarily complex flows where its only virtue is that it 
doesn't cause the computation to blow up. 

The Johnson-King model offers a helpful modification that removes much of 
the inadequacy of algebraic models for separated flows. However, like algebraic 
models, the Johnson-King model provides no information about the turbulence 
length scale and is thus incomplete. Consequently, it shares many of the short
comings of the underlying algebraic model. On the negative side, the improved 
agreement between theory and experiment for separated flows has been gained 
with a loss of the elegance and simplicity of the Cebeci-Smith model. The num
ber of ad hoc closure coefficients has increased from three to seven, and the 
model inherently requires an iterative solution procedure. The model is also for
mulated specifically for wall-bounded flows and is thus restricted to such flows, 
i .e., the model is highly geometry dependent. On the positive side, the Johnson
King model has been applied to many transonic flows that tend to be particularly 
difficult to predict with modem turbulence models. The model's track record has 
been quite good with such flows. Its predictions for attached boundary layers 
could be made even closer to measurements by either using Equation (3 .1 10) 
instead of Equation (3 . 1 48) or simply recalibrating the model's closure coeffi
cients. On balance, this model appears to be a useful engineering design tool, 
within its verified range of applicability. 
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Problems 

3.1 With the eddy viscosity given by Equation (3.25), generate a similarity solution for 
the far wake. Obtain the exact closed-form solution, and determine the value of x by 
forcing agreement with the corresponding u0 ( x) and 6 ( x) derived in this chapter. The 
following integral will be useful when you apply the integral constraint. 

3.2 With the eddy viscosity given by Equation (3.25), generate a similarity solution for 
the plane jet. Obtain the exact closed-fotm solution, and determine the value of x by 
forcing agreement with the corresponding uo ( x) and 6 ( x) derived in this chapter. The 
following integrals will be useful in deriving the solution . 

• dx 1 h - 1 x 
2 2 = -tan --

c -x c c 
+constant 

CXJ 

0 
[ 

2 ] 2 2 1 -tanh � de = 3 

3.3 Beginning with the integral constraint in Equation (3 .81) and assuming the streamwise 
velocity is U ( x, y) = uo ( x) U ('ry) where rJ = y I (Ax), determine the function Uo ( x) . 
Arrange your result so that 

00 

0 

2 . 
u (rJ) 'r]1 d'r] = 1 

and verify that your solution is consistent with Equation (3.84). 

3.4 Verify that the solution to Equations (3.45) is given by Equations (3.46)- (3.48) for 
the far wake. 

3.5 Beginning with Equation (3.65), introduce Equations (3.68) through (3.71) and derive 
Equation (3.73) for the mixing layer. 

3.6 Beginning with Equation (3.83), derive Equation (3.86) for plane and round jets. 

3.7 Beginning with Equation (3.83), derive Equation (3.86) for the radial jet. 

3.8 The skin friction and displacement thickness for a constant-pressure turbulent boundary 
layer are approximately CJ � 0.045Re�114 and 6* � �6, where Re<i = Ue6lv is 
Reynolds number based on 6. Note also that, by definition, CJ = 2u;IU'1. Assuming the 
matching point always occurs in the log layer so that au I ay = UT I ( "'Y)' make a graph 

of Ym I c5 and y:};,_ versus Reli for the Cebeci-Smith model. Let Reo vary between 104 and 
106. You should first rewrite the equations for vri and Vr0 in terms of y /6 and Re8. 
Then, solve the resulting equation for Yml6 with an iterative procedure such as Newton's 
method. Compare your numerical results with Equation (3 .118). 
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3.9 Show that using Equation (3 .99) for the mixing length in the viscous sub layer yields 

a velocity that behaves according to: 

2 
U+ + "' ( +)3  � y  - y + . . .  

3 
as 0 

3.10 Assume the velocity in a boundary layer for y+ » 1 is given by 

Also, assume that Yrnax >> 26v lu.,. for the Baldwin-Lomax model. Compute the quan

tities Yrnax Frnax and CwkYrnax UJi� I Frnax for this boundary layer. Then, noting that 
skin friction is given by c f = 2uT I u;, detennine the largest value of c f for which 

F wake YrnaxF rnax. HINT: The solution to the transcendental equation ( + tan ( = 0 
is e � 2.03. 

3.11 The momentum equation in the sublayer and log layer for a turbulent boundary layer 
with surface mass transfer simplifies to: 

dU d 
Vw d = d y y 

dU 
(v + VT) dy 

where Vw is the (constant) vertical velocity at the surface. 

(a) Integrate once using the appropriate surface boundary conditions. Introduce the 
friction velocity, uT, in stating your integrated equation. 

(b) Focusing now upon the log layer where VT » v, what is the approximate fonn of 
the equation derived in Part (a) if we use the Cebeci-Smith model? 

(c) VerifY that the solution to the simplified equation of Part (b) is 

2 uT \/1 + vw U lu� = ]:_eny +constant 
Vw K-

3.12 Detennine the constant C in the law of the wall implied by the mixing-length model 
using a standard numerical integration scheme such as the Runge-Kutta method. That is, 
solve the following equation for u+ . 

du+ ( 1  + p,� ) dy+ = 1 

Integrate from ];+ = 0 to y+ = 500 and calculate the limiting value of C as y+ oo 
from examination of 

1 
c = u+ - -fny + at y + = 250, 300, 350, 400, 450 and 500 

"' 

Do the computation with the mixing length given by (i) Equation (3.99) and (ii) Equa-
tion (3 . 1 05). NOTE: To avoid truncation error, verifY the following limiting form of the 
equation for dU+ I dy + .  

dy+ � 1 - frnix + 2 frnix + · · · 

Use this asymptotic form very close to y+ = 0. 

as 0 
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3.13 Generate a solution for channel and pipe flow using a mixing-length model with the 
mixing length in the inner and outer layers given by 

"-Y 1 - e-y+ /26 

.09R 
, 

, 

In ner Layer 
Outer Layer 

where R is channel half-height or pipe radius . Use a numerical integration scheme such as 
the Runge-Kutta method, or modify Program PIPE (see Appendix C). Compare computed 
skin friction with Equations (3 . 1 39) and (3 . 140). See NOTE below. 

NOTE for 3.13 and 3.14: To assist in presenting your results, verifY that skin 
friction and Reynolds number are given by Cf = 2/(U;}:v9)2 and Rev - 2U;tv9R+ 
where R+ = u-rR/v and Uavg is the average velocity across the channel/pipe. 
Also, to avoid truncation error, verifj' the following limiting form of the equation for 
dU+ / dy+ in the limit t!tix 0. 

1 - ' /)+ ) 2 (-(.mix + 2 

Use this asymptotic form very close to y+ = 0. 

y+ 
1 - R+ 

2 
' /)+ )4 \ .t-rn·ix 

3.14 Generate a solution for pipe flow using a mixing-length model with the mixing length 
given by Nikuradse's fonnula, i.e., 

£mix / R = 0.14 - 0.08 ( 1 - yj R)2 - 0.06( 1 - yj R)4 
where R is pipe radius. Use a numerical integration scheme such as the Runge-Kutta 
method, or modify Program PIPE (see Appendix C). Compare computed skin friction 
with Equation (3 . 1 40). See NOTE above. 

3.15 Using a standard numerical integration scheme such as the Runge-Kutta method, 
determine the constant C in the law of the wall implied by the Johnson-King model. That 
is, solve the following equation for u+ ' 

Integrate from y+ = 0 to y+ = 500 and calculate the limiting value of C as y+ oo 

from examination of 

1 c = u+ - -£ny+ at y+ = 250, 300, 350, 400, 450 and 500 
"' 

NOTE: To avoid truncation error, verify the following limiting form for dU+ / dy+ . 

du+ + 
2 

+ 4 

Use this asymptotic form very close to y+ = 0. 

as 0 
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3.16 Using Program PIPE and its menu-driven setup utility, Program PIPKDATA (see 

Appendix C), compute the skin friction for channel flow according to the Johnson-King 

model. Compare your results with the Halleen-Johnston correlation [Equation (3 . 1 39] for 
103 ::::; ReH ::::; 105 . Also, compare the computed velocity profile for ReH = 13750 with 
the Mansour et al. DNS data, which are as follows. 

I yj(H/2) I U/Um II yj(H/2) I U/Urn II yj (H/2) I U/Urn I 
0.000 0.000 rr 0.404 0.887 0.805 0.984 
0. 1 03 0.7 1 7  0.500 0.9 1 7  0.902 0.995 
0.207 0.800 0.602 0.945 1 .000 1 .000 
0.305 0.849 0.7 1 0  0.968 

3.17 Using Program PIPE and its menu-driven setup utility, Program PIPE_j)ATA (see 
Appendix C), compute the skin friction for pipe flow according to the Johnson-King 
model. Compare your numerical results with the Prandtl correlation [Equation (3 . 1 40] for 
103 ::::; Rev ::::; 106 . Also, compare the computed velocity profile for Rev = 40000 with 
Laufer's data, which are as follows. 

( yj(D/2) I U/Urn II yj(D/2) I U/Urn II yj(D/2) I U/Um I • 

0.0 1 0  0.333 .., 0.390 0.868 .,., 0.800 .,.. 0.975 ., 

0.095 0 .696 0.490 0.902 0.900 0.990 
0.2 1 0  0.789 0.590 0.93 1 1 .000 1 .000 
0.280 0.833 0.690 0.96 1 

3.18 The object of this problem is to compare predictions of algebraic models with mea
sured properties of a turbulent boundary layer with adverse \lp. The experiment to be 
simulated was conducted by Ludwieg and Tillman [see Coles and Hirst ( 1 969) - Flow 
1 200] . Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL_j)ATA, 
and the input data provided on the companion CD (see Appendix C). Do 3 computa
tions using the Cebeci-Smith, Baldwin-Lomax and Johnson-King models and compare 
computed skin friction with the following measured values. 

I s (m) I Cf II s <m) I Cf I 
r 0. 782 2.92 · 10--:r

.
,., 2 .282 1 .94· 1 0 --:r 

1 .282 2.49 · 10- 3 2.782 1 .55 · 1 0 -3 
1 .782 2.05 · 1 0 -3 

3.19 The object of this problem is to compare predictions of algebraic models with mea
sured properties of a turbulent boundary layer with adverse \7 p. The experiment to be 
s imulated was conducted by Bradshaw [see Coles and Hirst (1 969) - Flow 3300] . Use 
Program EDDYBL, its menu-driven setup utility, Program EDDYBLDATA, and the 
input data provided on the companion CD (see Appendix C). Do 3 computations using 
the Cebeci-Smith, Baldwin-Lomax and Johnson-King models and compare computed skin 
friction with the following measured values. 

I s (ft) I cl. II s (ft) I cl II s (ft) I 
2.5 2 .45 · 1 0- 4.00 1 .9 1 · 1 0 -- ·  7.00 
3.0 2 . 1 7 - l o - 3 5 .00 1 .74 · 10 - 3 
3 .5  2.00 · 1 0 - 3 6.00 1 . 6 1 · 1 0 -3 
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3.20 The object of this problem is to predict the separation point for flow past a circular 
cylinder with the boundary-layer equations, using the measured pressure distribution. The 
experiment to be simulated was conducted by Patel (1968). Use Program EDDYBL 
and its menu-driven setup utility, Program EDDYBL__DATA, to do the computations (see 
Appendix C). 

- - - - - - - - - - - - - -
u !9sep 

Wake 

_ _ _  ,.. _ ..,  _ _ _  _ ... ... ... .. '-- ... - - - - ... 
Problem 3.20 

(a) Set freestream conditions to Ptoo = 2147.7 lb/ft? , Tt00 = 529.6° R, Moo = 0.144 
(PTl , TTl ,  XMA ); use an initial stepsize, initial arclength and fmal arclength 
given by .6.s = 0.001 ft, Si = 0.262 ft and Sf = 0.785 ft (DS, SI, SSTOP); set the 
initial boundary-layer properties so that c f = 0.00600, 6 = 0.006 ft, H = 1.40, 
Re11 = 929, (CF, DELTA, H, RETHET); set the maximum number of steps to 500 
(IEND l ); and set up for N = 47 points to defme the pressure (NUMBER). Use 
the following data to defme the pressure distribution. The initial and fmal pressure 
gradients are zero. Finally, use zero heat flux at the cylinder surface. 

I 
0.0025 

0.0050 

0.0075 

0.0100 

0.0125 

0.0250 

0.0375 

0.0500 

0.0625 

0.0750 

0.0875 

0.1000 

0.1125 

0.1250 

0.1375 

Pe (lb/ft2) 
2 .147540 · 10' 

2.147528 · 103 

2.147491· 103 

2.147429 · 103 

2.147343 · 103 

2 .14723 3 · 103 

2.146314· 103 

2.144796 · 103 

2.142688 · 103 

2.140018 · 103 

2.136807 · 103 

2 .134021· 103 

2.130641 · 103 

2.127261 - 103 

2.123881 · 1 03 

2.120194 · 1 03 

II s (ft) I 
0 .1500 

0.1625 

0.1750 

0.1875 

0.2000 

0.2125 

0.2250 

0.2375 

0.2500 

0.2625 

0.2750 

0.2875 

0.3000 

0.3125 

0.3250 

0.3375 

Pe (lb/ft2) 
2.116199 · 10 

2.112205· 103 

2.107903 · 103 

2.103448 · 103 

2.0983 78 · 103 

2.093155· 103 

2.087317 · 103 

2.081325· 103 

2.075 334 · 103 

2.069189 - 103 

2.064580 · 103 

2.060893 · 103 

2.058588 - 103 

2.056898 - 1 03 

2.055823 · 103 

2.055362 · 103 

s (ft) 
0.3500 

0.3625 

0.3750 

0.3875 

0.4000 

0.4125 

0.4250 

0.4375 

0.4500 

0.4625 

0.4750 

0.4875 

0.5000 

0.6500 

0.7850 

I 

Pe (lb/ft2) 
2.055516·10 

2.056591· 1  o3 

2.058435 · 1 03 

2.061661· 1 03 

2 .066423 · 1 03 

2.071954 · 1 03 

2.079021· 1 0 3 

2.085473 - 1 0 3 

2.089161· 1 03 

2.091004 · 1 03 

2 .092080 · 1 03 

2.092230 · 1 03 

2.092230· 1 03 

2.092230 · 1  03 

2.092230 · 1 03 

I 

(b) Do three computations using the Cebeci-Smith, Baldwin-Lomax and Johnson-King 
models. Compare computed separation angle measured from the downstream sym
metry axis with the measured value of Bsep = 70° . The radius of the cylin
der is R = 0.25 ft, so that separation arclength, Ssep, is related to this angle by 
Bs ep = 7r - Ssep/  R. 



ne-

As computers have increased in power since the 1 960's, turbulence models based 
upon the equation for the turbulence kinetic energy have become the cornerstone 
of modem turbulence-modeling research. This chapter discusses two types of 
eddy-viscosity models, viz. , One-Equation Models and Two-Equation Models, 
with most of the emphasis on the latter. These models both retain the Boussinesq 
eddy-viscosity approximation, but differ in one important respect. One-equation 
models based on the turbulence kinetic energy equation are incomplete as they 
relate the turbulence length scale to some typical flow dimension. These models 
are rarely used. By contrast, two-equation models and one-equation models based 
on an equation for the eddy viscosity automatically provide the turbulence length 
scale or its equivalent and are thus complete. 

The chapter focuses strictly on incompressible flow and begins with a deriva
tion and discussion of the turbulence kinetic energy equation. We then introduce 
one-equation models based on this equation and upon a postulated equation for 
the eddy viscosity. The discussion includes examples of how such models fare 
for several flows. Next, we introduce two-equation models with specific details 
of the two most commonly used models. Our first two-equation model applica
tions are to the same free shear flows considered in Chapter 3 .  Then, we use a 
powerful tool , singular-perturbation theory, to analyze model-predicted features 
of the turbulent boundary layer. We apply two-equation models to attached wall
bounded flows and compare to corresponding algebraic-model predictions. We 
discuss the issue of asymptotic consistency approaching a solid boundary, and 
the ability of two-equation models to predict transition from laminar to turbu
lent flow. Our final applications are to separated flows. The concluding section 
discusses the range of applicability of one- and two-equation models. 

1 07 
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4. 1 The Turbulence Energy Equation 

Turbulence energy equation models have been developed to incorporate nonlocal 
and flow history effects in the eddy viscosity. Prandtl ( 1945) postulated com
puting a characteristic velocity scale for the turbulence, Vmix, thus obviating the 
need for assuming that Vmix rv Rmix i8Uj8yl [c.f. Equation (3 . 1 5)]. He chose 
the kinetic energy (per unit mass) of the turbulent fluctuations, k, as the basis of 
his velocity scale, i.e., 

k ( 4. 1) 

Thus, in terms of k and a turbulence length scale, R, dimensional arguments 
dictate that the kinematic eddy viscosity is given by 

Vr constant · k1 12R (4.2) 

Note that we drop subscript "mix" in this chapter for convenience, and to avoid 
confusion with the mixing length used in algebraic models. 

The question now arises as to how we determine k. The answer is provided 
by taking the trace of the Reynolds-stress tensor, which yields the following. 

(4.3) 

Thus, the trace of the Reynolds-stress tensor is proportional to the kinetic energy 
of the turbulent fluctuations per unit volume. The quantity k should strictly be 
referred to as specific turbulence kinetic energy ("specific" meaning "per unit 
mass"), but is often just called turbulence kinetic energy. 

In Chapter 2 we derived a differential equation describing the behavior of the 
Reynolds-stress tensor, Tij , i.e., Equation (2 .34). We can derive a corresponding 
equation for k by taking the trace of the Reynolds-stress equation. Noting that 
the trace of the tensor Ilij vanishes for incompressible tlow, contracting Equa
tion (2.34) leads to the following transport equation for the turbulence kinetic 
energy. 

8k u 8k 

ot + j 
axj 

a 
- E + -::-

OX · J 
(4.4) 

The quantity E is the dissipation per unit mass and is defined by the following 
correlation. 

8u' 8u' 
E -- 1/ t t ( 4.5) 

8xk 8xk 

The various terms appearing in Equation (4.4) represent physical processes 
occurring as the turbulence moves about in a given flow. The sum of the two 
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terms on the left-hand side, i.e., the unsteady term and the convection, is the 
familiar substantial derivative of k that gives the rate of change of k following a 
fluid particle. The first term on the right-hand side is known as Production, and 
represents the rate at which kinetic energy is transferred from the mean flow to 
the turbulence. Rewritten as Tij Sij (because Tij is symmetric), this term is seen 
to be the rate at which work is done by the mean strain rate against the turbulent 
stresses. Dissipation is the rate at which turbulence kinetic energy is converted 
into thermal internal energy, equal to the mean rate at which work is done by the 
fluctuating part of the strain rate against the fluctuating viscous stresses. The term 
involving vak I ax j is called Molecular Diffusion, and represents the diffusion 
of turbulence energy caused by the fluid's  natural molecular transport process. 
We refer to the triple velocity correlation term as Turbulent Transport, and 
regard it as the rate at which turbulence energy is transported through the fluid 
by turbulent fluctuations. The last term on the right-hand side of the equation 
is called Pressure Diffusion, another form of turbulent transport resulting from 
correlation of pressure and velocity fluctuations. 

· The quantity E as defined in Equation ( 4.5) differs from the classical definition 
of dissipation given in the preceding paragraph. From the latter, it follows that 
[ cf. Townsend ( 1 976) or Hinze (1 975)] the true dissipation, Etrue. is proportional 
to the square of the fluctuating strain-rate tensor, s�k , viz., 

-

2 

Hence, the quantity E is given by (for incompressible flow): 

a 
Etrue - a Xk 

(4.6) 

(4.7) 

In practice, the difference between E and Etrue is small and should be expected 
to be significant only in regions of strong gradients, e.g., shock waves or the 
viscous wall region. In the latter case, Bradshaw and Perot ( 1993) have shown 
that the maximum difference is just 2%, and can thus be ignored. 

The unsteady term, convection and molecular diffusion are exact while pro
duction, dissipation, turbulent transport and pressure diffusion involve unknown 
correlations. To close this equation, we must specify Tij, dissipation, turbulent 
transport and pressure diffusion. 

The conventional approach to closure of the k equation was initiated by 
Prandtl ( 1 945) who established arguments for each term in the equation. This 
term-by-term modeling approach amounts to performing drastic surgery on the 
exact equation, replacing unknown correlations with closure approximations. 
This process is by no means rigorous. The closure approximations are no better 
than the turbulence data upon which they are based. Our hope is that we can find 
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closure approximations that make accurate solutions possible. We will discuss 
this point in greater detail when we introduce two-equation models. 

Reynolds-Stress Tensor: For the class of turbulence models considered in 
this chapter, we assume the Boussinesq approximation is valid. Thus, we say 
that the specific Reynolds-stress tensor is given by 

(4.8) 

where Sij is the mean strain-rate tensor. Note that the second term on the 
right-hand side of Equation ( 4.8) . is needed to obtain the proper trace of Tij . 

That is, since Si i 0 for incompressible flow, contracting Equation ( 4.8) yields 
Ti i 2k in accord with Equation (4.3). 

Strictly, we should regard Equation (4.8) as the definition of vT . In this 
spirit, no approximation is implied, provided we don't explicitly say vT is a 
scalar. However, for the purposes of this chapter, we do in fact assume vT is a 
scalar so that the term "approximation" is appropriate. 

Thrbulent Transport and Pressure Diffusion: The standard approximation 
made to represent turbulent transport of scalar quantities in a turbulent flow is that 
of gradient-diffusion. In analogy to molecular transport processes, we say that 
-uj ¢' rv vToiJJ /ox j . Unfortunately, there is no corresponding straightforward 
analog for the pressure-diffusion term. In the absence of definitive experimental 
data, the pressure-diffusion term has generally been grouped with the turbulent
transport term, and the sum assumed to behave as a gradient-transport process. 
Fortunately, DNS results [e.g., Mansour, Kim and Moin (1 988)] indicate that the 
term is quite small for simple flows. Thus, we assume that 

1 1 vT ok 
-u'u'u'- + ...:..p'u'- = -2 t t J p J O"k OXj 

(4.9) 

where ak is a closure coefficient. Assuming the vectors on the left- and right
hand sides of Equation (4.9) are parallel (a somewhat optimistic assumption!), 
this equation defines a-k . As stressed by Bradshaw (1 994), this statement applies 
to all turbulence closure coefficients. At this point, no approximation has entered 
although, of course, we hope the model is realistic enough that a-k can be chosen 
to be constant. 

Dissipation: The manner in which we determine the dissipation is not unique 
amongst turbulence energy equation models. It suffices at this point to note that 
we still have two unknown parameters, which are the turbulence length scale, f, 
and the dissipation, E .  If both properties are assumed to be strictly functions of 
the turbulence independent of natural fluid properties such as molecular viscosity, 
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purely dimensional arguments [Taylor ( 1 935)] show that 

E rv k3/2 If 

I l l  

(4. 1 0) 

Hence, we still need a prescription for the length scale of the turbulence in order 
to close our system of equations. In the following sections, we will explore the 
various methods that have been devised to detetmine the length scale. 

Combining Equations (4.4) and (4.9), we can write the modeled version of 
the turbulence kinetic energy equation that is used in virtually all turbulence 
energy equation models. The equation assumes the following form, 

ok 
u 

ok 

at + j 
axj 

where rij is given by Equation ( 4.8). 

4.2 One-Equation Models 

(4. 1 1 ) 

To complete the closure of the turbulence kinetic energy equation, Prandtl ( 1 945) 
postulated that the dissipation assumes the fonn quoted in Equation (4. 1 0) .  In
troducing a closure coefficient that we will call C v, the dissipation is 

(4. 1 2) 

and the turbulence length scale remains the only unspecified part of the model. 
Given twenty years of experience with the mixing-length model, Prandtl had 
sufficient confidence that he could generalize established prescriptions for the 
turbulence length scale f. [Of course, f ex: Rmix only if the ratio of produc
tion to dissipation is constant. To see this, note that in a thin shear layer, 
Equation (3 . 1 8) gives au I oy ( -u' v') l /2 I Rmix. Hence, balancing production 
and dissipation means -u'v'8Uioy (-u'v')312lfmix Cvk312lf so that 
f ex: fmix if -u' v' I k constant.] As we wilJ discuss further below, measure
ments show that the constant is about 0.3 for many thin shear layers. Thus, 
Prandti 's One-Equation Model is as follows: 

(4. 1 3 ) 

where Tij is given by Equation (4 .8) and the kinematic eddy viscosity is 

Vr k112f Cvk2 IE (4. 14) 

Note that at this point we make an implicit assumption regarding the "con
stant" in Equation (4.2), which has been set equal to one in Equation (4. 14). 
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That is, there is no a priori reason why vT should depend only upon k and £, i.e., 
no reason why "constant" should really be constant. In reality, vT is the ratio of a 
turbulence quantity (e.g., -u'v') to a mean flow quantity (e.g. , au j8y +8V I 8x). 
Consequently, vT will not, in general, precisely follow mean-flow scales such as 
Ue and o* or turbulence scales such as k and £. Only in equilibrium flows for 
which production and dissipation balance are mean-flow and turbulence scales 
proportional and then either can be used for vT . Otherwise, an unknown mix 
of scales is needed . 

• 

Emmons ( 1 954) independently proposed essentially the same model. Before 
the model can be used in applications, the length scale, £, and the closure coeffi
cients Ok and C 0 must be specified. Emmons ( 1954) and Glushko ( 1965) applied 

• 

this model to several flows with some degree of success using Equation (4. 1 4) 
with ak 1 and Cv ranging between 0.07 and 0.09. Their length scale dis
tributions were similar to those used for the mixing-length model. Wolfshtein 
( 1 967) found that by introducing damping factors in the dissipation and eddy 
viscosity similar to the Van Driest factor [Equation (3 . 1 05)] ,  more satisfactory 
results can be obtained with this model for low-Reynolds-number flows. More 
recently, Goldberg ( 1 99 1 )  has refined the model even further. 

Although it is clearly more complex than an algebraic model , the Prandtl
Et'Ylmmons-Glushko one-equation model is certainly straightforward and elegant. 
As originally postulated it involves two closure coefficients and one closure func
tion (the length scale). Even with Wolfshtein's low-Reynolds-number corrections, 
the number of closure coefficients increases by only two so that the model ac
tually has fewer closure coefficients than the Baldwin-Lomax and Johnson-King 
models .  For attached flows, the Goldberg model has five closure coefficients, 
two damping functions, and a closure function for the length scale. Goldberg's 
number of closure coefficients and empirical functions more than doubles for 
separated flows. 

Bradshaw, Ferriss and Atwell ( 1967) formulated a one-equation model that 
avoids introducing a gradient-diffusion approximation. Rather than introduce the 
Boussinesq approximation, they argue that for a wide range of flows, the ratio 
of the Reynolds shear stress, Txy . to the turbulence kinetic energy, k, is constant. 
Measurements [Townsend ( 1976)] indicate that for boundary layers, wakes and 
mixing layers the ratio is nearly the same and given by 

f3r 0.3 (4. 1 5) 

The stress/energy ratio, i .e., the constant f3r , is often referred to as Bradshaw's 
constant, and sometimes as Townsend's constant.1 Building upon this presum
ably universal result, Bradshaw, Ferriss and Atwell formulated a one-equation 
model based on the turbulence kinetic energy. A novel feature of their formula
tion is that the equations are hyperbolic for boundary layers rather than parabolic. 

1 The notation Txy = 2a1 k is sometimes used where a1 � 0. 15 .  
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This is a direct consequence of modeling the k equation's turbulent transport term 
by a "bulk-convection" process rather than a gradient-diffusion approximation as 
in Equation ( 4. 1 1  ) . The resulting equations are thus solved by using the method 
of characteristics. 

""- o  
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2 - 0 
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0 
0 

I 
4 5 

-

I 
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Figure 4.1:  Comparison of computed and measured skin friction for Bradshaw 
Flow C; -- Bradshaw-Ferriss-Atwell model; o Bradshaw. 

Figure 4. 1 compares computed and measured skin friction for Flow 3300 
of the 1 968 AFOSR-IFP-Stanford Conference on the Computation of Turbulent 
Boundary Layers. As shown, the differences between theory and experiment are 
even less than those obtained using the Cebeci-Smith and Baldwin-Lomax models 
[see Figure 3 . 1 7] .  Overall, the Bradshaw-Ferriss-Atwell model's skin friction for 
boundary layers in adverse pressure gradient was closest of the various models 
tested in the 1 968 Conference to measured values. 

One-equation models have been fmmulated that are based on something other 
than the turbulence energy equation. Nee and Kovasznay ( 1968), for example, 
postulated a phenomenological transport equation for the kinematic eddy viscos
ity, vT . The equation involves terms similar to those appearing in Equation (4. 1 3).  
The model has four closure coefficients and requires prescription of the turbu
lence length scale. Sekundov ( 1 97 1 )  developed a similar model that has generated 
considerable interest in the Russian research community, but that has rarely been 
referenced in Western journals. The English-language report of Gulyaev et al. 
( 1993) summarizes work on the Sekundov model in its 1 992 version. The paper 
by Vasiliev et al. ( 1 997) shows that the 1 97 1  version, although very simple, is 
complete and quite capable. 

Baldwin and Barth ( 1 990), Spalart and Allmaras ( 1 992) and Menter ( 1 994) 
have devised even more elaborate model equations for the eddy viscosity. The 
Baldwin-Barth model, for example, includes seven closure coefficients and three 
empirical damping functions. The Baldwin-Barth model is as follows. 



1 1 4  CHAPTER 4. ONE-EQUATION AND TWO-EQUATION MODELS 

Kinematic Eddy Viscosity: 

Turbulence Reynolds 

a -
at vRr 

Closure Coefficients and Auxiliary Relations: 

2.0, 

1 

p 

and 

• 

( 4. 1 6) 

( 4. 1 7) 

(4. 1 8) 

( 4. 1 9) 

( 4.20) 

(4.2 1 )  

(4.22) 

The Baldwin-Barth model is complete as it involves no adjustable functions 
or coefficients. While this guarantees nothing regarding its suitability for a given 
application, it does make its implementation convenient. This type of model 
constitutes the simplest complete model of turbulence. 

Note that the Baldwin-Barth model circumvents the need to specify a dissi
pation length such as the quantity f in Equation (4. 1 3) by expressing the decay, 
or dissipation, of the eddy viscosity in terms of spatial gradients. That is, the 
dissipation term in Equation ( 4. 1 7) ,  Ev, is 

-

1 avr o(vRr) 
Ev = 

a€ axk oxk (4.23) 

As a consequence of this closure approximation, Ev 0 when spatial gradients 
vanish. Thus, rather than decaying with streamwise distance, the eddy viscosity 
will remain constant in a uniform stream. This incorrect feature can produce non
physical diffusion in a numerical computation, for example, of a multi-element 
airfoil . 
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The Spalart-Allmaras model is also written in terms of the eddy viscosity. 
The model includes eight closure coefficients and three closure functions. Its 
defining equations are as follows. 

Kinematic Eddy Viscosity: 

Eddy Viscosity Equation: 

ail u av 
- + · -::-at 3 axj 

iJ 2 1 [) - + - -=--

d (T axk 

Closure Coefficients and Auxiliary Relations: 

( - )  {)i) v + v � 
UXk 

Cb l 0. 1355, Cb2 0.622, Cvl 7 . 1 ,  2/3 

Cwl 
Cbl ( 1  + Cb2 ) 
f\,2 + 

CT 
, Cw2 0.3 ,  Cw3 2 , K, 0.41 

x
3 

fv l -- 3 + 
.3 ' 

X Cv1 
f = 1 - X 
v2 f , 

1 + X, vl 
fw 

- -
v g r + cw2 (r6- r) , 

v 
' v 

r X -

(4.24) 

(4.26) 

(4.27) 

1/6 
(4.28) 

(4.29) 

(4.30) 

The tensor nii � (aUdaxi - oUi/axi) is the rotation tensor and d is 
distance from the closest surface. Although not listed here, the model even 
includes a transition correction that introduces four additional closure coefficients 
and two more empirical functions. Finally, note that the source terms for the eddy 
viscosity equation depend upon the distance from the closest surface, d, as well 
as upon the gradient of iJ. Since d oo far from solid boundaries, this model 
also predicts no decay of the eddy viscosity in a uniform stream. 

To determine how close one-equation model predictions are to measurements, 
we turn first to the five free shear flow applications considered in Section 3 . 3 . 
Since the Baldwin-Barth and Spalart-Allmaras models are complete, the turbu
lence scales are automatically defined, i.e., neither model involves an adjustable 
closure coefficient such as a in Equation (3 .34) . Comparing computed and mea
sured spreading rate provides a straightforward, and concise, gauge of how well 
the models reproduce measured flow properties. 
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The conventional definition of spreading rate for the wake is the value of 
the similarity variable, 'fJ y J p U! / ( Dx) (see Subsection 3 .3 . 1  ), where the 
velocity defect is half its maximum value. Similarly for the plane jet, round 
jet and radial jet, the spreading rate is the value of yjx where the velocity is 
half its centerline value. For the mixing layer, the spreading rate is usually 
defined as the difference between the values of yjx where (U - U2)2 /(U1 - U2)2 
is 9/ 10 and 1 /1 0. 

Table 4. 1 :  Free Shear Flow Spreading Rates for One-Equation Models. 

I Flow I Baldwin-Barth I Spalart-Alhnaras I Measured I 
Far Wake T 0.3 1 5  0.341 0.320-0.400 
Mixing Layer - 0. 1 09 0. 1 03-0. 1 20 
Plane Jet - 0 . 1 5 7  0. 1 00-0. 1 1 0 
Round Jet - 0.248 0.086-0.096 
Radial Jet - 0 . 1 66 0.096-0. 1 1 0 

Table 4.1 compares computed and measured spreading rates for the Baldwin
Barth and Spalart-Allmaras models. The numerical results for the Spalart
Allmaras model have been obtained using Programs WAKE, JET and MIXER 
(see Appendix C). The table includes only the far-wake spreading rate inferred 
from the computations of Baldwin and Barth ( 1 990) for the Baldwin-Barth model. 
Figures 4.2 and 4.3 compare computed and measured velocity profiles for the far 
wake and the mixing layer. 

Attempts at incorporating the Baldwin-Barth model in WAKE, JET and 
MIXER have proven unsuccessful because the tridiagonal matrix corresponding -
to the discretized form of the equation for v Rr is ill conditioned. Contrary to 
the comments of Baldwin and Barth ( 1 990), who warn of possible numerical 
difficulties, the problem does not stem from poor grid resolution. Rather, the 
model predicts a sharp discontinuity in the eddy viscosity just inside the edge of 
the shear layer that destabilizes the computation, independent of grid size. 

The Baldwin-Barth model predicts a far-wake spreading rate 2% below the 
lower bound of measured values, while the Spalart-Allmaras model's spreading 
rate is within the range of measurements. The Spalart-Allmaras model's mixing
layer spreading rate is also within the range the measured values. However, its 
predicted plane-jet and radial-jet spreading rates are more than 40% higher than 
measured, while the round-jet value is nearly triple the corresponding experimen
tal value. These results are entirely consistent with the fact that these models 
have been optimized for aerodynamic applications, most notably for flow past a 
wing. The mixing layer and far wake are salient in this context, while jets are 
not. These applications do show one of the limitations of the Spalart-Allmaras 
model, i.e., it is unsuitable for applications involving jet-like free shear regions. 
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Figure 4.2: Comparison of computed and measured far-wake velocity profiles: 
- Spalart-Allmaras model; • Fage and Falkner (1932); o Weygandt and Mehta 
(1995). 
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Figure 4.3 : Comparison of computed and measured velocity profiles for a mixing 
layer: Spalart-Allmaras model; o Liepmann and Laufer (1947). 
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Figure 4.4 compares computed and measured skin friction for the sixteen 
boundary layers with pressure gradient used to assess algebraic models in Chap
ter 3 .  All computations have been done with Program EDDYBL (see Ap
pendix C). Table 4.2 smmnarizes overall differences between computed and 
measured Cf for the Baldwin-Barth and Spalart-Allmaras models. The overall 
average difference at the final station for the flows is 24% for the Baldwin-Barth 
model and 14% for the Spalart-Allmaras model. 

Table 4.2: Differences Between Computed and Measured Skin Friction. 

Pressure Gradient 

Favorable 
= 

Mild Adverse 
Moderate Adverse 
Strong Adverse 
All 

Flows 

1 400, 1 300, 27;::;:00�.:::;:6�300 
1 1 00, 2 1 00, 2500, 4800 
2400, 2600, 3300, 4500 
0 1 4 1 , 1 200, 4400, 5300 

--

Baldwin-Barth 

2% 
1 9% 
32% 
44% 
24% 

Spalart-Allmaras 

1 %  
1 0% 
1 0% 
33% 
1 4% 

The Baldwin-Barth model's predicted skin friction is consistently smaller than 
measured for boundary layers with adverse pressure gradient. As an example, 
for the Samuel-Joubert increasingly adverse pressure gradient case (Flow 0 1 4 1 ), 
the computed skin friction is 4 7% lower than the measured value. Although all 
twelve adverse-pressure-gradient flows are attached, the Baldwin-Barth model 
predicts separation for three cases, viz., Flows 4800 (mild adverse \lp), 4500 
(moderate adverse \lp) and 5300 (strong adverse \lp). This clearly illustrates the 
model ' s  tendency to respond too strongly to adverse pressure gradient, relative 
to measurements, in the sense that it always predicts too large of a decrease in 
skin friction. 

As shown by Sai and Lutfy ( 1995), the Baldwin-Barth model is extremely 
sensitive to the freestream value of the eddy viscosity. While using nonphysically -
large values for Rr reduces differences between computed and measured Cf , no 
freestream values have been found that can prevent separation for Flows 4800, 
4500 and 5300. 

By contrast, aside from transients near the beginning of several of the compu
tations, the Spalart-Allmaras Cf is as close to corresponding measured values as 
the Baldwin-Lomax algebraic model. For the Samuel-Joubert case, the computed 
skin friction is 5% higher than measured. The sole case with large differences 
between computed and measured flow properties is the "incipient-separation" 
case of Stratford ( 1 959), i.e., Flow 5300. As shown in Figure 4.4, the predicted 
value of c1 at the end of the computation is 3 .4 times the measured value. Re
call that the Johnson-King 1 /2-equation model (see Figure 3 . 1 9) exhibits similar 
behavior for this flow, while being much closer to measurements for the other 
fifteen cases. 
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Figure 4.4: Computed and measured skin friction for boundary layers subjected 
to a pressure gradient. Top row - favorable \7 p; next to top row - mild adverse 
\7 p; next to bottom row - moderate adverse \7 p; bottom row - strong adverse 
\7p. Spalart-Allmaras model; - - - Baldwin-Barth model; o measured. 
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Figure 4.5 : Computed and measured flow properties for Driver 's separated flow; 
- Spalart-Allmaras model; - - - Baldwin-Barth model; o Driver. 

Figure 4.5 shows how the Spalart-Allmaras and Baldwin-Barth models fare 
for Driver's separated flow as demonstrated by Menter ( 1 992b, 1 994) . The 
Spalart-Allmaras model predicts a separation bubble that is about 60% larger 
than measured. The Baldwin-Barth model skin friction deviates from measured 
values even more than the Baldwin-Lomax model (see Figure 3 . 1 8), with a 
predicted separation bubble region that is more than twice the size measured by 
Driver. The results for the Baldwin-Barth model are not surprising in light of 
how poorly the model fares for attached boundary layers in adverse \7 p. 

The backward-facing step (Figure 4.6) is a popular test case for turbulence 
models because the geometry is simple. Additionally, separation occurs at the 
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Figure 4 .6: Backward-facing step flow geometry and inlet conditions for the 
Driver-Seegmiller (1985) experiments. [From Driver and Seegmiller (1985) -
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sharp comer so the flow is easier to predict than a flow for which the separation 
point is unknown a priori . Figure 4.7 compares computed and measured [Driver 
and Seegmiller ( 1 985)] skin friction for backstep flow with the upper channel 
wall inclined to the lower wall at 0° . The Spalart-Allmaras model predicts 
reattachment at 6 . 1  step heights, H, downstream of the step. This is within 3% 
of the measured value of 6.26H. Although not shown here, the model predicts 
reattachment at 8.6H when the upper wall is inclined at 6°, which is within 6% 
of the measured value of 8. 1H. 
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0 
0 
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0 0 

0 

10 

Figure 4.7: Computed and measured skin friction for flow past a backward
facing step; -- Spalart-Allmaras model; o Driver-Seegmiller. 

Thus, on balance, Spalart-Allmaras predictions are satisfactory for many en
gineering applications. It is especially attractive for airfoil and wing applications, 
for which it has been calibrated. Its failure to accurately reproduce jet spreading 
rates is a cause for concern, and should serve as a warning that the model has 
some shortcomings. Nevertheless, the model appears to be a valuable engineering 
tool. 

By contrast, the Baldwin-Barth model predicts much larger discrepancies 
between computed and measured CJ than the Spalart-Allmaras model and the 
much simpler algebraic models. The discrepancies are so large (an average of 
24% for the 1 6  attached boundary-layer cases) that its use for boundary-layer 
flows is inadvisable. It is also extremely sensitive to the freestream value of the 
eddy viscosity and can be very difficult to cast in finite-difference form (e.g. , by 
yielding ill-conditioned matrices). Given all of these flaws, the model should be 
abandoned in favor of the Spalart-Allmaras model . 

In light of these facts, we have not yet arrived at a universal turbulence 
model. In general, one-equation models share a few of the failures as well as 
most of the successes of the mixing-length model. While there is a smaller 
need for adjustment from flow to flow than with the mixing-length model, the 
Spalart-Allmaras model, as good as it is, is unable to predict spreading rates 
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for plane, round and radial jets that are consistent with measurements. Also, 
while the model 's predictions for attached boundary layers are usually as close 
to measurements as those of algebraic models, its skin friction for the Stratford 
incipient-separation case (Flow 5300) is several times higher than measured. 
Finally, while it provides close agreement with measured reattachment length for 
the backward-facing step and airfoils with small separation bubbles, its predicted 
separation bubble for the Driver flow is significantly larger than measured. This 
erratic pattern is a bit discomforting, and suggests that something better is needed 
for general turbulent-flow applications. To reach a more-nearly universal model, 
especially for separated flows, we must seek a model in which transport effects 
for the velocity and length scales are accounted for separately. The rest of this 
chapter is devoted to investigating such models. 

Two-Equation Models of turbulence have served as the foundation for much 
of the turbulence-model research during the past three decades. For example, 
almost all of the computations done for the 1 980-8 1 AFOSR-HTTM-Stanford 
Conference on Complex Turbulent Flows used two-equation turbulence models. 
These models provide not only for computation of k, but also for the turbulence 
length scale or equivalent. Consequently, two-equation models are complete, 
i .e. ,  can be used to predict properties of a given turbulent flow with no prior 
knowledge of turbulence structure. 

In the following discussion of two-equation models, arguments are often pre
sented in terms of the k-w model. This, in no way, constitutes a campaign to 
popularize the model . Rather, it usually reflects either the author's  greater famil
iarity with the k-w model (as one of its developers) or its analytical simplicity 
relative to other models. Except in cases where conclusions are obvious, ev
ery attempt has been made to leave the reader to make judgments regarding the 
superiority of any model described in this book. 

The starting point for virtually all two-equation models is the Boussinesq 
approximation, Equation ( 4.8), and the turbulence kinetic energy equation in the 
form of Equation ( 4 . 1 1  ). As pointed out at the end of Section 4. 1 ,  there is an 
arbitrariness in the way we define the turbulence length scale, .e, to go with the 
velocity scale, k112 .  

Kolmogorov ( 1942), for example, pointed out that a second transport equation 
is needed to compute the so-called specific dissipation rate, w. This quantity has 
dimensions of (time)- 1 .  On dimensional grounds, the eddy viscosity, turbulence 
length scale and dissipation can be determined from 

Vr '"'-' kjw, E '"'-' wk ( 4.3 1 )  
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Chou (1 945) proposed modeling the exact equation for € .  In terms of this 
fotmulation, the kinematic eddy viscosity and turbulence length scale are 

(4.32) 
Rotta ( 1 95 1 )  first suggested a transport equation for the turbulence length 

scale and later ( 1 968) proposed an equation for the product of k and f. In either 
case, 

(4.33) 

More recently, Zeierman and Wolfshtein ( 1986) introduced a transport equa
tion for the product of k and a turbulence dissipation time, r, which is es
sentially the reciprocal of Kolmogorov's w.  Also, Speziale, Abid and Anderson 
(1 990) have postulated an equation for r. For these models, 

E "' k/r (4.34) 

Regardless of the choice of the second variable in our two-equation model, 
we see a recurring theme. Specifically, the dissipation, eddy viscosity and length 
scale are all related on the basis of dimensional arguments. Historically, dimen
sional analysis has been one of the most powerful tools available for deducing 
and correlating properties of turbulent flows. However, we should always be 
aware that while dimensional analysis is extremely useful, it unveils nothing 
about the physics underlying its implied scaling relationships. The physics is in 
the choice of variables. 

One of the key conclusions of the 1 980-8 1 AFOSR-HTTM-Stanford Confer
ence on Complex Turbulent Flows was · that the greatest amount of uncertainty 
about two-equation models lies in the second transport equation complementing 
the equation for k. Further, it was even unclear about what the most appropriate 
choice of the second dependent variable is. In the quarter century following the 
Conference, interesting developments have occurred, most notably with the k-w 
model, that help clear up most of the uncertainty. 

Before proceeding to details of two-equation models, it is worthwhile to pause 
and note the following. As with one-equation models, there is no fundamental 
reason that vT should depend only upon turbulence parameters such as k, f, 
€ or w .  In general, the ratio of individual Reynolds stresses to mean strain 
rate components depends upon both mean-flow and turbulence scales. Thus, 
two-equation turbulence models are no more likely than one-equation models to 
apply universally to turbulent flows, and can be expected to be inaccurate for 
many non-equilibrium turbulent flows. 

Additionally, some researchers even argue that the addition of another dif
ferential equation invites unexpected numerical difficulties and miscellaneous 
unintended mathematical anomalies. We will indeed see some of this behavior 
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as we investigate two-equation turbulence models, and what has been done to 
deal with the additional complexities attending their implementation. 

4.3.1 The k-w Model 

As noted above, Kolmogorov ( 1 942) proposed the first two-equation model of 
turbulence. Kolmogorov chose the kinetic energy of the turbulence as one of his 
turbulence parameters and, like Prandtl ( 1 945), modeled the differential equation 
governing its behavior. His second parameter was the dissipation per unit tur
bulence kinetic energy, w. Jn his k-w model, w satisfies a differential equation 
similar to the equation for k .  With no prior knowledge of Kolmogorov's work, 
Saffman ( 1 970) formulated a k-w model that would prove superior to the Kol
mogorov model . As part of the hnperial College efforts on two-equation models, 
Spalding [see Launder and Spalding ( 1 972)] offered an improved version of the 
Kolmogorov model that removed some of its flaws. 

Shortly after formulation of Saffman's  model and continuing to the present 
time, Wilcox et al. [Wilcox and Alber ( 1 972), Saffman and Wilcox ( 1 974), 
Wilcox and Traci ( 1 976), Wilcox and Rubesin ( 1 980), Wilcox ( 1 988a) and 
Wilcox ( 1 998)] have pursued further development and application of k-w turbu
lence models. Coakley (1 983) has developed a k112-w model. Speziale, Abid 

' 

and Anderson ( 1 990), Menter ( 1 992c ), Peng, Davidson and Holmberg ( 1997), 
Kok (2000) and Hellsten (2005) have also devised k-w models. Robinson, Harris 
and Hassan ( 1995) have developed a k-( model, where ( "' w2 is enstrophy, 
i.e., the RMS fluctuating vorticity. 

In formulating his model, Kolmogorov referred to w as "the rate of dissipa
tion of energy in unit volume and time." To underscore its physical relation to 
the " ' external scale' of turbulence, R," he also called it "some mean 'frequency' 
determined by w ck112 I R, where c is a constant." On the one hand, the re
ciprocal of w is the time scale on which dissipation of turbulence energy occurs. 
While the actual process of dissipation takes place in the smallest eddies, the 
rate of dissipation is the transfer rate of turbulence kinetic energy to the smallest 
eddies. Hence, it is set by the properties of the large eddies, and thus scales 
with k and R, wherefore w is indirectly associated with dissipative processes. On 
the other hand, in analogy to molecular viscosity, we expect the eddy viscos
ity to be proportional to the product of length and velocity scales characteristic 
of turbulent fluctuations, which is consistent with Kolmogorov's argument that 
w rv k112 I f. Of course, we should keep in mind that analogies between molec
ular and turbulent processes are not trustworthy, and Kolmogorov's argument is 
essentially an exercise in dimensional analysis, not fundamental physics. 

The development of the Kolmogorov model ( 1942) is quite brief and doesn't  
even establish values for all of the closure coefficients. Since little formal de
velopment of the equations is given, we can only speculate about how this great 
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turbulence researcher may have arrived at his model equations. Since he makes 
no specific reference to any exact equations, it seems unlikely that he attempted 
to close the k equation or other moments of the Navier-Stokes equation term by 
term. Rather, as the great believer in the power of dimensional analysis that he 
was, it is easy to imagine that Kolmogorov's original reasoning may have gone 
something like this. 

• Since k already appears in the postulated constitutive relation [Equa
tion (4 .8)] , it is plausible that v7 ex k.  

• The dimensions of vT are (length)2/(time) while the dimensions of k are 
(length)2/(time)2. 

• Consequently vTjk has dimensions (time). 

• Turbulence dissipation E has dimensions (length)2/(time)3• 

• Consequently c/k has dimensions 1 /(time). 

• We can close Equations (4.8) and (4. 1 1 ) by introducing a variable with 
dimensions (time) or 1/(time). 

The next step is to postulate an equation for w. In doing so, the avenue that 
Kolmogorov took was to recognize that there is a fairly small number of phys
ical processes commonly observed in the motion of a fluid. The most common 
processes are unsteadiness, convection (often referred to as advection), diffu
sion, dissipation, dispersion and production. Combining physical reasoning with 
dimensional analysis, Kolmogorov postulated the following equation for w. 

ow ow 0 ow 
0 + Uj 0 -(3w2 + 0 avT 0 (4.35) t Xj Xj Xj 

We have taken some notational liberties in writing Equation ( 4 .35), and (3 and 
a are two new closure coefficients. This equation has four particularly notewor
thy features. First, there is no analog to the k-equation's turbulence production 
term. The absence of a production term is consistent with Kolmogorov's notion 
that w is associated with the smallest scales of the turbulence, and thus has no 
direct interaction with the mean motion. His logic is flawed on this issue as 
the large-scale, energy-bearing eddies are primarily responsible for determining 
the appropriate time scale of the turbulence, and the rate of dissipation itself. 
Second, the equation is written in terms of w rather than w2 . As will be shown 
when we analyze the defect layer in Subsection 4.6.2, Kolmogorov's decision 
to write his equation in terms of w was a somewhat prophetic choice. Third, 
there is no molecular diffusion term so that this equation applies strictly to high
Reynolds-number flows and cannot be integrated through the viscous sublayer 
as it stands. Fourth, it is entirely empirical, guided by physical reasoning. 
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The interpretation of w has behaved a bit like the turbulent fluctuations it is 
intended to describe. Saffman (1970) described w as "a frequency characteristic 
of the turbulence decay process under its self-interaction." He stated further, 
"The rough idea is that w2 is the mean square vorticity of the 'energy containing 
eddies' and [k] is the kinetic energy of the motion induced by this vorticity." 
Spalding [Launder and Spalding ( 1 972)], Wilcox and Alber ( 1972) and Robinson, 
Harris and Hassan ( 1 995) identify w as the RMS fluctuating vorticity, so that w2 
is twice the enstrophy. Wilcox and Rubesin ( 1 980), Wilcox ( 1988a, 1 998) and 
Speziale et al. ( 1 990) regard w simply as the ratio of E to k. 

The w equation has changed as the k-w model has evolved over the past six 
decades. A production term has been added by all model developers subsequent 
to Kolmogorov. Like Kolmogorov, Wilcox ( 1988a, 1 998), Speziale et al. ( 1 990), 
Peng et al. ( 1 997), Kok (2000) and Hellsten (2005) write the equation for w 

in terms of w, while most other models use an equation for w2• The following 
version of the k-w model dramatically improves predictive accuracy of the Wilcox 
( 1 988a) model for free shear flows and strongly separated flows.2 

Kinematic Eddy Viscosity: 

k -w max w, clim 

Turbulence Kinetic Energy: 

ak u ak aui f-l* k a 
at + j axJ� 

= Tij ax · 
-

fJ W + ax · 

Specific Dissipation Rate: 

J J 

' 

* k  
v + o-

w 

w aui (.l 2 0" d ak aw a 
= 0! T: · · - fJW + + --

k tJ ax . w ax . ax . ax . J J J J 

Closure Coefficients and Auxiliary Relations: 
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< 0  ax · ax · -
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> 0 0" do , ax · ax · J J 

ak 
ax · . J 

7 
-
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ll + O" 

w 

1 
-

8 

(4.36) 

(4.37) 

aw 
ax · J 
(4.38) 

(4.39) 

(4.40) 

2 These equations can be used for general compressible flows by replacing v, vr, kjw and kjw 
by J.l = pv, J.lr = pvr , pkjw and pkjw, respectively, and multiplying all but the diffusion 
by p. Also, a mean-energy and equation of state must be added see Subsection 5.4.7 for complete 
details . 



4.3. TWO-EQUATION MODELS 

1 + 85xw f3o = 0.0708, Jf3 = , 1 + 100Xw 

and 

nijnjkski 
({3*w )3 

1 27 

(4.4 1 )  

(4.42) 

To avoid confusion, from this point on, we will refer to Equations (4.36) - (4.42) 
as the Wilcox (2006) k-w model. 

The tensors nij and Sij appearing in Equation (4.41 )  are the mean-rotation 
and mean-strain-rate tensors, respectively defined by 

- -

2 ' 
1 

(4.43) 

As can be easily verified, the quantity Xw is zero for two-dimensional flows. 
The dependence of {3 on Xw , patterned after the work of Pope ( 1 978), has a 
significant effect for round and radial jets. 

The most important differences between this version of the k-w model and 
earlier versions created by Wilcox et al. are addition of a "cross-diffusion" 
term and a built-in "stress-limiter" modification that makes the eddy viscos
ity a function of k, w and, effectively, the ratio of turbulence-energy production 
to turbulence-energy dissipation. 

The term in Equation (4.38) proportional to ad is known as cross diffusion. 
The addition of cross diffusion to the w equation was first suggested by Speziale 
( 1 990) as a remedy for the original k-w model' s  sensitivity to the freestream 
value of w. While Speziale and others, e.g., Menter ( 1 992c ), Wilcox ( 1993 ), Kok 
(2000) and Hellsten (2005) have succeeded in using cross diffusion to eliminate 
boundary-condition sensitivity, usually it has come at the expense of the ability 
to make reasonable predictions for free shear flows. Strictly speaking, models 
created in this spirit will be limited in applicability to wall-bounded flows. 

The stress-limiter modification, i.e., the dependence of Vr upon w rather 
than strictly w, was first introduced by Coakley ( 1983) and later implemented 
by Menter ( 1 992c) and Durbin ( 1 996). Huang ( 1999) shows that limiting the 
magnitude of the eddy viscosity when turbulence-energy production exceeds its 
dissipation yields larger separation bubbles and greatly improves incompressible
and transonic-flow predictions. Kandula and Wilcox ( 1 995), for example, have 
verified for a transonic airfoil that it improves predictive accuracy of the k-w 
model without cross diffusion and blending functions3 and/or nonlinear con
stitutive relations such as those implemented by Menter ( 1992c) and He listen 
(2005). In point of fact, the success that has been achieved with the k-w model 
stated in Equations (4.36) - (4.42) demonstrates that blending functions add little 
advantage and counter the elegance and simplicity of the k-w model. 

3 Blending functions are designed to make closure coefficients a, (3, (3*, a, a* and ad assume 
one set of values near a solid boundary and another set near the edge of a shear layer. 
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The improvements to the k-w model represent a significant expansion of its 
range of applicability. As we will see in the applications addressed in this Chapter 
and in Chapter 5, the new model retains the strengths of previous versions of the 
k-w model. The model 's  improvement over earlier versions lies in its accuracy 
for free shear flows and for even more complicated separated flows. When we 
proceed to applications, we will see the following features of the k-w model 
defined in Equations (4.36) - (4.42). 

• The model is as accurate as the Wilcox ( 1 988a) model for attached bound
ary layers, mildly separated flows and backward-facing steps. This is 
important because the Wilcox ( 1 988a) model predicts properties for such 
flows that are in very close agreement with measurements. The new model 
is nearly identical for all attached boundary-layer computations, mildly sep
arated flows and backward-facing steps attempted to date. 

• The model's predicted free shear flow spreading rates are much closer 
to measurements, so that it is applicable to both wall-bounded and free 
shear flows. Since most complex turbulent flows include both types of 
regions, this is a minimum requirement for any turbulence model that is 
proposed for use in complex flows. With the exception of the enstrophy
equation model developed by Robinson, Harris and Hassan ( 1 995) using 
1 1  closure coefficients and 2 closure functions no other two-equation 
model known to this author satisfies this requirement. 

• The model provides greatly improved predictions for shock-separated flows 
without introducing any compressibility modifications to the model. Chap
ter 5 includes comparisons of measurements with model predictions for 
Mach numbers from transonic to hypersonic speeds that reflect the model 's 
extended range of applicability. Earlier versions of the k-w model required 
compressibility modifications to achieve reasonable results. 

4.3.2 The k-E Model 

By far, the most popular two-equation model until the last decade of the twentieth 
century was the k-E model. The earliest development efforts based on this model 
were those of Chou ( 1945), Davidov ( 1 96 1 )  and Harlow and Nakayama (1 968). 
Widespread use of the model began with the version introduced by Jones and 
Launder ( 1 972). Launder and Sharma (1 974) subsequently "retuned" the model 's  
closure coefficients and created what is generally referred to as the Standard 
k-E model. 

Again, we begin with Equations ( 4.8) and ( 4. 1 1  ) .  In formulating the k-E 
model, the idea is to derive the exact equation for E and to find suitable closure 
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approximations for the exact equation governing its behavior. Recall that E is 
defined by Equation ( 4.5). The exact equation for E is derived by taking the 
following moment of the Navier-Stokes equation: 

au� a 
2v ax t ax . [N(ui )] o 

J J 
(4.44) 

where N( ui ) is the Navier-Stokes operator defined in Equation (2 .26) . After a 
considerable amount of algebra, the following exact equation for E results. 

fJE 
U 

aE 
-:::- + . -:::--

at J axj 
-2v 

a 
+ -ax · J 

(4.45) 

This equation is far more complicated than the turbulence kinetic energy 
equation and involves several new unknown double and triple correlations of 
fluctuating velocity, pressure and velocity gradients. These correlations are essen
tiallyimpossible to measure with any degree of accuracy so that there is presently 
little hope of finding reliable guidance from experimentalists regarding suitable 
closure approximations. DNS studies [e.g. Mansour, Kim and Moin (1 988)] pro
vide some insight into the exact E transport equation for low-Reynolds-number 
flows. However, the database for establishing closure approximations similar to 
those used for the k equation remains very sparse. 

Many researchers have proceeded undaunted by the lack of a rational basis for 
establishing closure approximations with a feeling that using Equation (4.45) as 
their foundation adds rigor to their approach. The strongest claim that can actu
ally be made is that conventional closure approximations used for Equation (4.45) 
are dimensionally correct. This is not very different from the Kolmogorov (1 942) 
and Saffman (1 970) approaches that are guided almost exclusively by physical 
reasoning and dimensional analysis. An important point we should keep in mind 
is to avoid modeling the differential equations rather than the physics of 
turbulence. That is not to say we should avoid any reference to the differen
tial equations, for then we might formulate a model that violates a fundamental 
physical feature of the Navier-Stokes equation. Rather, we should avoid deluding 
ourselves by thinking that the drastic surgery approach to something as complex 
as Equation ( 4.45) is any more rigorous than dimensional analysis. 

Even if we had demonstrably accurate closure approximations for the exact 
E transport equation, there is a serious question of their relevance to our ba
sic closure problem. That is, the length or time scale required is that of the 
energy-containing, Reynolds-stress-bearing eddies rather than the dissipating ed
dies represented by the exact E equation. So, we must ask whether the modeled 
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equation for E represents the dissipation as such [as Equation (4.45) does] , or 
whether it is actually an empirical equation for the rate of energy transfer from 
the large eddies (equal, of course, to the rate of dissipation in the small eddies) . 
The answer seems clear since the closure approximations normally used param
eterize the various terms in the modeled E equation as functions of large-eddy 
scales (our use of dimensional analysis does this implicitly). Consequently, the 
relation between the modeled equation for E and the exact equation is so tenuous 
as not to need serious consideration. The Standard k-€ model is as follows. 

Kinematic Eddy Viscosity: 

1\trbulence Kinetic Energy: 

ak 
u 

ak 
at 

+ j 
axj 

Dissipation Rate: 

a€ a€ € aui E2 a 

J J 

Closure Coefficients and Auxiliary Relations: 

1.92, el-l = 0.09, ak 1.0, 

w = Ej(C!-lk) and f = CJ.tk312 jE 

• 
(4.46) 

(4.47) 

( 4.48) 

(4.49) 

( 4.50) 

As noted above, the Launder-Sharma (1974) model is known as the Standard 
k-E model. In addition to the equations quoted here, it involves viscous damping 
functions, which are discussed in Section 4.9. 

A more recent version of the k-E model has been developed by Yakhot and 
Orszag (1986) [see also Yakhot et al. (1992)]. Using techniques from renonnal
ization group theory, they have developed what is known as the RNG k-E model. 
The eddy viscosity, k and E are still given by Equations (4.46), (4.47) and (4.48). 
However, the model uses a modified coefficient, Ce2, defined by 

Ce2 ·e2 + 
l+/3>.3 

, >. � 2SiiSii (4.51) 

The closure coefficients for the RNG k-E model are4 
-

Cd = 1.42, Ce2 1.68, C 1-l 0.085, ak 0. 72, at 0. 72 ( 4.52) 

(4.53) 

4This version of the RNG k-E model has been gleaned from the open literature. A proprietary 
improved version exists, but is available only in commercial computer programs for general turbulent
flow applications. 
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4.3.3 Other Two-Eq n Models 

Two-equation models based on the turbulence length scale, .e, and the turbulence 
time scale, T, have received less attention than k-w and k-E models. Generally 
speaking, the level of agreement between measurements and predictions made 
with other models is comparable to k-w and k-E predictions for simple constant
pressure flows, but these models have not been pursued to any great extent. This 
subsection presents a brief overview of length-scale and time-scale models .  More 
details can be found in the various papers referenced in the discussion. 

The proposed foundation for Rotta' s ( 1 968) k-k.e model is the two-point 
velocity correlation tensor defined in Equation (2.49), viz., 

Rij(x, t; r) u�(x, t) uj(x + r, t) (4.54) 

As discussed in Subsection 2.5.2, the turbulence kinetic energy is simply one 
half the trace of Rij with a displacement r = 0. Rotta's second variable is the 
product of k and the integral length scale, .e, which is the integral of Rii over 
all displacements, r lrl. Thus Rotta's variables are given by 

00 

k and (4.55) 

As with attempts to model the exact dissipation equation, no particular ad
vantage has been gained by introducing the two-point velocity correlation tensor. 
While an exact equation for k£ can indeed be derived, Rotta ( 1968) still had to 
perfotm drastic surgery on the exact equation. Using standard closure approx
imations based largely on the strength of dimensional analysis, the following 
modeled version of the exact k£ equation results. 

a a aui 3/2 
a 

(k.e ) + uj 
a 

(k.e ) cLl.eTij a - cL2k 
t Xj Xj 

a a ak a.e 
( 4.56) 

For this model, k and Vr are given by Equations (4. 13)  and (4. 1 4). Rodi 
and Spalding ( 1 970) and Ng and Spalding ( 1 972) developed this model further. 
More recently, Smith (1 990) has pursued development of a k-k£ model. Smith 
( 1 994) and Benay and Servel (200 1) have developed k-£ models for which the 
dependent variable is .e rather than k£. Ng and Spalding found that for wall
bounded flows, the closure coefficient C L2 must vary with distance from the 
surface. They propose the following set of closure coefficients. 

eLl 0.98, CL2 0.059+ 702(£jy)6, Cv 0.09, CTk CT£1 CT£2 1 
(4.57) 
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On a similar tack, Zeierman and Wolfshtein (1 986) base their model upon 
the autocorrelation tensor defined in Equation (2.43), i .e., 

'Rij(x, t; t') u�(x, t)uj(x, t + t') ( 4.58) 

The turbulence kinetic energy is half the trace of Rij with t' 0, while the 
integral time scale is proportional to the integral of Rii over all possible values 
oft'. Thus, 

k 
1 
2Rii(x, t; 0) and 1 

kT = -
2 0 

00 

Rii(x,t; t') dt' 

The Zeierman-Wolfshtein k-kT model is as follows. 

Kinematic Eddy Viscosity: 

Turbulence Kinetic Energy: 

ak 
u 

ak -+ jat axj 

Integral Time Scale: 

aui k a ak 
T:· ---+-:---
�) ax· T ax· J J 

a a 
at 

(kT) + Uj ax. (kT) 
J 

a 
+ax· J 

Closure Coefficients and Auxiliary Relations: 

(4.59) 

(4.60) 

(4.6 1 )  

(4.62) 

Cri 0.173, Cr2 - 0.225, c/.L 0.09, ak 1.46, aT 10.8 (4.63) 

and f. C k1/2T tL (4.64) 

Note that because the eddy viscosity is proportional to kT, Equation (4.62) can 
also be regarded as an equation for vT. 

Speziale, Abid and i\nderson ( 1 990) have taken a different approach in de
vising a k-T model. Specifically, they introduce the formal change of dependent 
variables E k / T and transform the Standard k-E model. The resulting equation 
for T is as follows. 

aT U aT 
at + j axj 

(4.65) 
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Speziale, Abid and Anderson use the following revised set of closure coefficient 
values for their k-r model that make it a bit different from the Standard k-E 
model. 

c€1 1.44, c€2 1.83, c/1 0.09, O"k O"rl O"r2 1.36 (4 .66) 

fu summary, the models listed above are representative of the various two
equation models that have been devised since Kolmogorov's  ( 1 942) k-w model. 
While other models have been created, the intent of thi� text is to study models 
in a generic sense, as opposed to creating an encyclopedia of turbulence mod
els. fu the following sections we investigate several aspects of two-equation 
models including: (a) specifYing closure-coefficient values; (b) surface boundary 
conditions for wall-bounded flows; and, (c) applications to a variety of flows. 

4.4 Closure Coefficients 

All of the two-equation models have closure coefficients that have been intro
duced in replacing unknown double and triple correlations with algebraic expres
sions involving known turbulence and mean-flow properties. The k-w model, for 
example, has six, viz., a, /30, {3* , a, a-* and ado· If our theory were exact, we 
could set the values of these coefficients from first principles much as we use the 
kinetic theory of gases to detetmine the viscosity coefficient in Stokes' approxi
mation for laminar flows. However, the theory is not exact, but rather a model 
developed mainly on the strength of dimensional analysis. Consequently, the best 
we can do is to set the values of the closure coefficients to assure agreement with 
observed properties of turbulence. 

This section describes the manner in which the closure coefficients have been 
determined for the k-w model. There is no loss of generality in doing this since 
these same general arguments have been used in establishing the values of the 
closure cof:!fficients in most two-equation models. The problems section at the 
end of the chapter examines some of the (relatively minor) differences among 
the various models. 

We can establish the ratio of {3* to {30 by applying the model to decaying 
homogeneous, isotropic turbulence. fu this kind of turbulence, there are no 
spatial gradients of any mean-flow properties wherefore Equations (4.37) and 
( 4.38) simplifY to 

dk 
= -f]*wk dt and (4.67) 

where we note that, because Xw - 0, we have ff3 1 so that f3 {30 [see 
Equation (4.41 )]. The asymptotic solution for k is readily found to be 

k rv cf3* lf3o (4.68) 
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Experimental observations (see Townsend (1 976)] indicate that k rv t-n where 
n 1.25 ± 0.06 for decaying homogeneous, isotropic turbulence. Choosing 
(3* I {30 1.27 sets the ratio near the center of the range of accepted values. 

Values for the coefficients a and (3* can be established by examining the log 
layer. Recall from Section 3.4 that the log layer is defined as the portion of the 
boundary layer sufficiently distant from the surface that molecular viscosity is 
negligible relative to eddy viscosity, yet close enough for convective effects to be 
negligible. In the limiting case of an incompressible constant-pressure boundary 
layer, the mean-momentum equation and the equations for k and w simplify to 
the following. 

0 

0= 

a au 
ay VT ay 

au 2 a 
- (3*wk + a* 

a y 
k ak 
w ay -::--ay 

au 
ay - oW + + a-::--

0..! ay ay ay w ay ... 

( 4.69) 

We will justify the limiting form of these equations when we use perturbation 
methods to analyze the log layer in Subsection 4.6. 1 .  We seek the conditions for 
which these simplified equations yield a solution consistent with the law of the 
wall. As can be easily verified, Equations ( 4.69) possess such a solution, viz., 

U = Ur -Cny + constant, 
/'\, 

w (4.70) 

where uT is the conventional friction velocity and /'\,is Karman's  constant. There 
is one constraint imposed in the solution to Equations ( 4.69), namely, a unique 
relation exists between the implied value of Karman's constant and the various 
closure coefficients. Specifically, the following equation must hold. 

(4.7 1 )  

Additionally, according to our solution the Reynolds shear stress, Txy, is 
constant and equal to u;. Inspection of Equations (4.70) shows that this implies 
T xy -- (3* k in the log layer. A variety of measurements [Townsend ( 1 97 6)] 
indicate the ratio of Txy to k is about 3/10 (i.e., Bradshaw's constant) in the 
log layer. This is the same ratio Bradshaw, Ferriss and Atwell ( 1 967) used in 
formulating their one-equation model [c.f. Equation (4. 1 5)]. Thus, the predicted 
log-layer solution is consistent with experimental observations provided we select 
(3* 9/100. Since we selected (3* I f3o 1.27 above, necessarily f3o 0.0708. 
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We must work a bit harder to determine the values of a, a* and ado· As 
we will see in Subsections 4.6.2 and 4.6.3, detailed analysis of the defect layer 
and the sublayer indicates that the optimum choice is a 1/2. Analysis of 
free shear flows in Section 4.5 justifies setting a* 3/5 and ado 1/8. 
Finally, Equation (4.7 1 )  shows that selecting a 13/25 gives a value for the 
Karman constant of 0.40. Thus, in summary, the values of the six primary closure 
coefficients in the k-w model are 

13 
25' /3o = 0.0708, /3* 9 -

100' 
1 -
2' 

3 
a* = -

5' 

These are the values quoted in Equations (4.39) and (4.4 1) .  

1 
ado = B (4.72) 

Other arguments have been used to detennine closure coefficients prior to 
any applications or computer optimization. Saffman ( 1 970), for example, uses 
estimates based on vortex-stretching processes in simple shear and pure extension 
to effectively establish bounds on a coefficient similar to a. He also requires 
that the length scale, .e, be discontinuous at a turbulent/nonturbulent interface 
and finds that his model requires a a* 1/2 to guarantee such behavior. 

Zeierman and Wolfshtein ( 1 986) use the fact that very close to separation, 
measurements [Townsend ( 1 976)] indicate the law of the wall is replaced by 

U------t 
1 y dP 

-
0.24 p dx 

as y - 0 (4.73) 

They also observe from measurements of Laufer ( 1 950) and Clark ( 1 968) that, 
for flow near the center of a channel, the turbulence kinetic energy and velocity 
are closely approximated by 

� 1 + 6.67(y/ R)2 
� 1 - 0.242(y/ R)2 
� 0.048U0k�12 

as y ------t R (4.74) 

Briggs et al. ( 1996) provide another simple argument that can be used to 
establish closure-coefficient values. They have done a Large Eddy Simulation 
(LES -Chapter 8) of a shear-free mixing layer, an idealized flow that is relevant 
for geophysical studies. In this flow, the turbulent-transport (diffusion) terms 
balance dissipation terms in the k, w, E, etc. equations. For example, the k-w 
model simplifies to 

a 
* 

ak 
j3 *wk 

ay 
a Vr ay 

(4.75) 
a aw ado ak aw 

f3ow2 -- aVr ay ay w ay ay 
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where we observe that, since the production terms are zero the stress limiter has 
no effect in this flow, necessarily Vr kjw. Briggs et al. conclude that the 
asymptotic behavior of k and Vr is 

k ,..._, Ky-2.45 and Vr ,..._, Vy-0.42 as y---+ oo (4.76) 

where K and V are constants. Matching this asymptotic behavior yields a con
straint on the values of (30, (3*, a, a* and ado· In the absence of cross diffusion, 
for example, the Briggs et al. behavior is consistent with setting af3* a*,80• 

For the values given in Equation (4.72), the k-w model predicts k ,..._, Ky-2·68 

and Vr rv V y-0·34, which is fairly close to the LES behavior. Briggs et al. also 
show that the k-E model predicts k ,..._, K y-4·9 and Vr ,..._, V y-1.5, which bears 
no resemblance to the LES results. 

In conclusion, the specific flows selected for determination of the closure 
coefficients are a free choice of the developer. For example, using data for 
homogeneous turbulence and boundary layers assumes we have a degree of uni
versality that may be grossly optimistic. That is, we are implicitly assuming our 
model is valid for grid turbulence, boundaty layers, and many flows in between. 
Dropping homogeneous turbulence in favor of more boundary-layer data may 
yield a model optimized for boundary layers but restricted to such flows. Ideally, 
we would find flows that isolate each closure coefficient. Often, more than one 
is involved [e.g., Equation (4.7 1 )] .  In any event, for the sake of clarity, the 
arguments should be as simple as possible. 

4.5 Application to Free Shear Flo'\vs 

Our first applications will be for free shear flows. In this section, we seek 
similarity solutions to determine farfield behavior for the plane wake, mixing 
layer, plane j et, round jet and radial jet. In addition to developing the similarity 
solutions for the k-w and k-E models, we also discuss several aspects of the solu
tions and differences between the k-w and k-E models. These include: solution 

" 

sensitivity to freestream boundary conditions; (b) cross diffusion; and, (c) the 
round-jet/plane-jet anomaly. 

Solution sensitivity to freestream boundary conditions is an issue that pre
viously has not been completely understood. We will find that solutions for 
two-equation turbulence models are sensitive to the freestream value of w, E, 
etc. even when boundary conditions are chosen so that k and Vr are both very 
small in the freestream. Cross diffusion is a term appearing in the w, E or other 
second transport equation that results from making a formal change of variables 
in transforming from one set of turbulence parameters (e.g., k and w) to another 
(e.g., k and E or k and £). We will see how cross diffusion affects free-shear
layer predictions. The round-jet/plane-jet anomaly is a classical problem that has 
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plagued turbulence models. Many models predict that the round jet grows faster 
than the plane jet, while measurements show the opposite to be true. We will 
see which models suffer from the anomaly and which do not. 

4.5.1 Developing the Similarity Solution 

There are two noteworthy changes in our approach to obtaining a solution for 
free shear flows. 

1 .  For the mixing layer and the jets we can choose our similarity variable to 
be 17 yjx. That is, with no loss of generality, we can set all scaling 
constants such as A in Equations (3 .70) and (3.7 1 )  equal to one. We had 
to carry such scaling coefficients for the mixing-length model because, by 
hypothesis, the mixing length is proportional to the width of the layer, 
which is proportional to the coefficient A. With two-equation models, the 
turbulence length scale is detennined as part of the solution so that the 
way in which we scale the similarity variable 17 is of no consequence. 

2.  ·while the rest of the methodology is the same, the addition of two extra 
differential equations complicates the problem somewhat. Because they 
are the most widely used two-equation models, we confine our attention 
to the k-w and k-E models. 

With the standard boundary-layer/shear-layer approximations, the equations of 
motion become: 

0 

X y yJ y 

au 
Txy = l/r 

8y 
k-w Model: 

U
ak + v ok 

= 
au 

(3
* k 1 a 

Txy {) 
- W + . 

{) ox 8y y yJ y 
j * k {)k 

y a  
{) w y 

ow ow w au 2 ad {)k ow 1 {) 
U 0 + V 0 ·- 0' k Txy 0 - (3w + 0 0 + . 0 x y y w y y yJ y 

k 
Vr = -' w 

-w=max 

' 
c . 1au 1 oyl 

W, ll·m 
(3

* 

(4.77) 

(4.78) 

(4.79) 

(4.80) 
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k-€ Model: 

U 
ak + V 

ak aU 1 a · Vr ak 
a a = Txy a - € + 

. a 'if a X y Y y J Y G'k Y 

a€ a€ € au E2 1 a 
U 

ax + V 
ay -- C€1 kTxy ay - 0"2 k 

+ 
y i  ay 

Vr -- C p,k2 / € 

j l/T a€ 
y - -=-0'€ ay 

( 4.8 1 ) 

In Equations (4.77) - (4.8 1 ), j 1 for the round jet and m 1 for the radial 
jet. Otherwise, j and m are zero. The similarity solution for the various free 
shear flows can be written in the following compact fonn. 

Far Wake: 

U(x, y) = Uoo -

17-Y P Ul>o 
Dx 

DUoo E(x, y) = E(17) px2 

Mixing Layer: 

Jet: 

U(x, y ) U1U(ry), k(x, y) U'f K(ry) 

w(x, y ) = 
ul W(ry), E(x, y) = --=-
X X J 

y -
X 

Jl/2 
U(x, y) = x(rn+j+l)/2 U(ry), k(x, y) = -..,...---,..---� 

Jl/2 J3/2 
w(x, y ) = x<m+j+3)/2 W(ry), E(x, y ) = x(3m+3j+5)/2 E(ry) 

y 
T} = X 

(4.82) 

(4.83) 

(4.84) 
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Substituting these self-similar representations into the mean-momentum equation 
yields the general form 

( 4.85) 

where the functions N (17) and V(17) are transfotmed eddy viscosity and normal 
velocity-like functions, respectively. The two terms on the left-hand side of 
Equation ( 4.85) are essentially vertical convection and diffusion. The tenn on 
the right-hand side is a source term that originates from the streamwise convection 
of momentum, while the function f N ( 1J) reflects the k-w model 's stress limiter. 
Table 4.3 lists the coefficient Su and the nonnal-velocity function, V(1J), for each 
of the free shear flows considered. The transformed k, w and E equations are: 

k-w Model: 

dK 1 d 
V dn - · d . , 7]1 1] 

dl-V 1 d 
V dn - · d • I 'f}J 1} 

i N dW 
1] 

(]' d1] 

N =  K 
W' fN = min 1, 

k-€ Model :  

dU 2 

d1] 

2 

- E 

dU 
d1] 

( 4.86) 

( 4.87) 

The k, w and E equations contain convective terms, diffusion terms, and addi
tional source terms corresponding to streamwise convection, production, dissipa
tion and cross diffusion. Table 4.3 lists the convective source-term coefficients, 
Sk, Sw and Be. The table also lists the exponents j and m for each free shear 
flow. 
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Flow 

Far Wake 

Mixing Layer 

Plane Jet 

Round Jet 

Radial Jet 

Table 4.3 : Free Shear Flow Parameters. 

Su sk Sw 
1 1 1 -
2 

0 0 u 

!U 2 u "J.u 2 

u 2U 2U 

u 2U 2U 

Se • 
J 

2 0 

u 0 

P.u 2 
0 

4U 1 

4U 0 

m 
T 

0 

0 

0 

0 

1 

V(TJ) 
1 -27] 

- fo"' U(TJ')dTJ' 

-� fo"' U ( TJ')dTJ' 

-* fo"' U( TJ')TJ' d7J' 

- fo"� U(TJ')dTJ' 

To complete the solution, we must specify the vortex-stretching parameter Xw 
defined by 

Xw 
nijnjkski 

((3*w )3 
(4.88) 

to specify the function f13 [see Equation (4.41 )] appearing in the k-w model. 
Because evaluation of this parameter involves matrix multiplication, it is worth
while to il lustrate details of the mathematics. For two-dimensional shear flows, 
the strain-rate and rotation tensors are 

au 1 au 0 0 1 au 0 - -ax 2 ay 2 ay 
[Sii] � 

1 au av 0 and [nij] � 
1 au 0 0 ( 4.89) - --

2 ay oy 2 ay 
0 0 0 0 0 0 

where x and y denote streamwise and normal directions, respectively. Hence, 
for two-dimensional incompressible flow, we have 

1 --
4 

au 2 

8y 
au av 
ox 

+ 
8y (4.90) 

where we use the fact that the divergence of the velocity vanishes for incom
pressible flow. This corresponds to the fact that vortex stretching is exactly zero 
in two-dimensional flows. Thus, we conclude that 

Plane jet (4.9 1 )  
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By contrast, for general axisymmetric flows, these two tensors are 

[ Sii] :;-:. 

[Oii] � 

oUr 
or 
0 

.! ( oUr + ollv ) 
2 ax or 

0 
0 

_.! ( oUr _ oU;n ) 
2 ox or 

0 
Ur 
r 
0 

0 
0 

0 

.! ( oUr + auv ) 
2 ox or . 

0 
auv 
ax 

.! (oUr _ oU;n ) 
2 OX or 

0 

0 
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(4.92) 

(4.93) 

where x and r denote axial and radial directions, respectively. So, for incom
pressible flow, there follows 

n13n31Sn + n31n13S33 
1 

- - - --::--
4 ax ar ar ax 

1 aUr aUx 2 Ur 
(4.94) 

where we use the fact that the continuity equation in axisymmetric flows is 

8Ux aUr Ur 
O -- + + _..:._ = 

ax ar r 
Ur 
r 

= 
aUx aVr 

-
ax 

+ 
ar 

( 4.95) 

Hence, Xw is nonzero for axisyrmnetric flows. This reflects the fact that rings 
of vorticity with an axis parallel to the direction of flow can be stretched as the 
flow spreads radially. 

Finally, we must make this equation consistent with the notation used in 
Equations (4.77)- (4.79). For the round jet we have Ux U, Ur V, x x 
and r y, while the radial jet has Ux V, Ur U, x y and r x. Noting 
that au I ay » av I ax for shear layers, the parameter Xw is 

0, Plane jet 

1 (aUj8y)
2 v 

Round jet -
4 (f3*w )3 ' ( 4.96) Xw y 

1 (aUjay)2 U 
Radial jet -

4 (f3*w)3 ' 
X 
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In terms of the similarity solution, we have5 

0 ,  Plane jet 

1 dU 2 !U - V/1J! 
Round jet -

4 d1] (f3*W)3 
' ( 4.97) Xw 

1 dU 2 u 
Radial jet -

4 d1] (f3*W)3' 

Finally, we must specifY the parameter>.. appearing in the RNG k-E model 
[Equation ( 4.5 1 )] .  In terms of similarity variables, >.. is 

KdU 
E d1J 

( 4.98) 

Boundary conditions on the velocity are the same as in Chapter 3. We must 
also specifY boundary conditions forK, W and E. Solutions for two-equation 
models often feature (nonphysical) sharp turbulent/nonturbulent interfaces for 
free shear flows, i.e., interfaces at which derivatives of flow properties are dis
continuous (see Subsection 7.2.2). Consequently, the most sensible boundary 
conditions in the freestream are those corresponding to nonturbulent flow, i.e., 

K ( 17), W ( 17) and E ( 17) all vanish approaching the edge of the shear layer. As 
it turns out, two-equation-model solutions are affected by finite values of K, W 
and E in the freestream, and are sensitive to the freestream value of E or W. 
Subsection 4.5.3 focuses in more detail on this sensitivity. The most appropriate 
boundary conditions forK, W and E are as follows. 

Wake and Jet: 
(4.99) 

Wake, Jet and Mixing Layer: 

K(r;) ---.. 0, W(17) ---.. 0, and E(rJ) - 0 as 00 (4. 1 00) 

This completes formulation of the similarity solution for the k-w and k-E 
models. We have demonstrated that all pertinent equations and boundary condi
tions transform to a set of equations and boundary conditions that can be written 
in terms of the similarity variable, fJ. In so doing, we have formulated a nonlin
ear, two-point boundary-value problem that obviously cannot be solved in closed 
form. In the next section, we discuss the numerical solution. 

5In terms of similarity variables, the radial velocity, V(x, y), for the round jet transforms to 
V ( 17) = dF/ d17 - F( rJ) / 7], where F( 17) is the transformed streamfunction. We have defmed 
U(17) -11�1dF/d1'] and V(77) = F(17)/77. Thus, the similarity fonn of IV(x,y)jyJ is JU- V/711· 
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4.5.2 Numerical Sol 

143 

As in Section 4.2, we use the conventional definition of spreading rate for 
the wake, which is the value of TJ given in Equation (4.82), where the velocity 
defect is half its maximum value. Similarly for plane, round and .-adial jets , 
the spreading rate is the value of yjx where the velocity is half its centerline 
value. For the mixing layer, the spreading rate is the difference between the 
values of y/x where (U -U2)2 /(U1-U2)2 is 9/1 0 and 1 /1 0. Table 4.4 compares 
computed (using Programs WAKE, MIXER and JET see Appendix C) and 
measured spreading rates for the k-w, k-E and RNG k-E models. Figures 4.8 
through 4. 1 1  compare computed and measured velocity profiles for these three 
models. 

Table 4.4: Free Shear Flow Spreading Rates for Two-Equation Models. 

I Flow I k-w Model ! k-€ Model I RNG k-€ Model I Measured I 
= 

·
0.320-0.400 Far Wake 0.326 0.256 0.290 

Mixing Layer 0.096 0.098 0.099 0.103-0.120 
Plane Jet 0.108 0.109 0.147 0.100-0.110 
Round Jet 0.094 

. + 0.086-0.096 0.120 0.185 
Radial Jet 0.099 0.094 0.111 0.096-0.110 

Of the three models, the k-w model is closest to measured spreading rates. 
With the exception of the mixing layer, computed spreading rates fall within 
the range of measured values. The predicted mixing-layer spreading rate is 6% 
below the lower bound of measured values. Using the average values from the 
measured ranges, the average difference between theory and experiment is 6%. 

The k-E model predicts a spreading rate that is 20% lower than the lower 
bound of measured values for the far wake, 5% lower than measured for the 
mixing layer, 2% lower for the radial jet and 25% higher than the upper bound 
measured for the round jet. Only for the plane jet does its predicted spreading 
rate fall within the range of measured values. The average difference between 
computed and average measured spreading rates for the k-E model is 1 7%. The 
RNG k-E model yields even larger differences (an average of 36% ), including a 
predicted round-jet spreading rate that is double the measured value. 

Figures 4.8 - 4. 1 2  reveal an especially noteworthy feature of the k-w solu
tions. The figures show the smooth variation of the velocity profiles approaching 
the freestream for all five free shear flows, which is consistent with measure
ments. By contrast, the k-E model predicts a nonphysical discontinuous slope in 
the velocity profile at the edge of the shear layer for the wake, the mixing layer 
and the radial jet. The RNG k-E model predicts discontinuous slope for all five 
cases. 
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Figure 408: Comparison of computed and measured velocity profiles for the far 
wake; k-w model; - - - k-E model; 0 0 0 0 RNG k-E model; • Fage and Falkner 
(1932); o Weygandt and Mehta (1995)0 
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Figure 4.9: Comparison of computed and measured velocity profiles for the 
mixing layer; k-u.J model; - - - k-E model; 0 0 · 0 RNG k-E model; o Liepmann 
and Laufer (1947). 
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Figure 4.1 2 :  Comparison of computed and measured velocity profiles for the 
radial jet: k-w model; - - - k-E model; · · · · RNG k-E model; o Witze and 
Dwyer (1976). 

Table 4.5 lists computed spreading rates for five other models that illustrates 
how difficult it has proven to be to develop a model that adequately describes free 
shear flows. Values listed for the k-(, model are from Robinson et al. ( 1 995). All 
other values have been obtained using modified versions of Programs WAKE, 
MIXER and JET- see problems section. The Robinson et al. ( 1 995) enstrophy
equation (k-0 model predicts spreading rates that are quite close to measured 
values for all five free shear flows. By contrast, the Speziale et al. ( 1 990) k-T 
model and the Peng et al. (1 997) and Kok k-w models predict spreading rates 
that are significantly smaller than measured. Finally, the Wilcox ( 1 988a) k-w 
model predicts spreading rates that are larger than measured for all five cases. 

Table 4.5: More Two-Equation Model Free Shear Flow Spreading Rates. 

Flow 
Peng et 

et a!., k-( et a!., k-r k-w Measured 

0.083 0.135 
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The latter results provide a definitive measure of how the addition of cross 
diffusion and the modification to (3 defined in Equations (4.39)- (4.42) improves 
the k-w model. The addition of cross diffusion produces more production relative 
to dissipation in thew equation. This, in tum, increases w and thus the dissipation 
in the k equation, which reduces computed spreading rates for free shear flows 
in general. The variation of (3 with Xw reduces dissipation relative to production 
in the w equation for round and radial jets, which further increases dissipation in 
the k equation. Hence, both moditications counter the Wilcox ( 1 988a) model's 
excess production, relative to dissipation, for free shear flows. 

4.5.3 Sensitivity to Finite Freestream Boundary Conditions 

Two-equation models have a unique, and unexpected feature when nonzero 
freestream boundary conditions are specified for k, U..', E, etc. Specifically, even 
if we select k and the second turbulence property (w, E, etc.) to be sufficiently 
small that both k and Vr are negligible, the solution is sensitive to our choice of 
the second turbulence property's freestream value. This is an important consid
eration since most computations are done with these assumptions. 

Figure 4. 1 3  shows how the spreading rate, t5', varies with the freestream 
value of w for the k-w model defined in Equations ( 4.36) - ( 4.42) and the 
Wilcox ( 1 988a) k-w model for the far wake, the mixing layer and the plane 
jet. It also shows the variation of 6' with the freestream value of E for the 
Standard k-E model defined in Equations (4.46) - (4.50). In all three graphs, 
6� is the predicted spreading rate for the limiting case w00 0 for the k-w 
models and €00 0 for the k-t: model . All computations have been done with 
the dimensionless eddy viscosity, N( oo ) , equal to w-6. 
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Figure 4. 1 3 :  Sensitivity of free shear flow spreading rates to freestream condi
tions: · · · · k-E model; Wilcox (2006) k-w model; - - - Wilcox (1988a) k-w 
model. wo and Eo are for rJ 0. 
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All three models predict a decrease in spreading rate as the freestream value 
of w or E increases. In all three graphs, the freestream value is scaled with respect 
to the value at "1 0, which is very close to the maximum value for each flow. 
As shown, without cross diffusion, the k-w model displays a strong sensitivity 
to the freestream value of w. The addition of cross diffusion greatly reduces 
the sensitivity. The k-E model predicts very little sensitivity to the freestream 
value of E. The graphs also show that if the freestream value is less than 1% of 
the maximum value [w00/wo < 0.01, E00 /Eo < 0.01] there is virtually no effect 
on the predicted spreading rate. Certainly this is not an unreasonable constraint 
because using a freestream value of w or E in excess of 1% of the peak value 
would very likely correspond to using a physically unrealistic value. 

There is no mystery about why the solution should have some sensitivity to 
freestream boundary conditions. We are, after all, solving a two-point boundary
value problem, which requires freestream boundary conditions on all variables, 
including w and E. In light of this, it is clear that there must be some range of 
boundary values that affect the solution. Figure 4. 1 3  shows that there is a well 
defined limiting form of the solution for vanishing freestream boundary values, 
further validating the claim that Equations (4.99) and (4. 1 00) are the proper 
freestream boundary conditions. 

It i s  the odd nature of the differential equation for E that makes the k-E model 
much less sensitive to freestream conditions than the k-w model. Specifically, 
because its dissipation term is proportional to E2 / k, the equation is singular as 
k 0 for finite freestream values of E. This unusual behavior of the E equation 
obviates the need to invest enough thought to avoid prescribing physically unre
alistic freestream values for a quantity such as E. While this may be comforting 
to engineers who don't  care to invest such thought, the next example should serve 
as a wake-up call that being sloppy with freestream boundary conditions can foil 
the "protection" provided by the E equation. As we will see, using nomencla
ture coined by Menter (1 992c ), the k-E model has "degenerate"6 solutions for 
excessively large freestream values of E. 

To further demonstrate how farfield boundary conditions affect two-equation 
model predictions we now focus on one-dimensional propagation of a turbulent 
front into a quiescent fluid. This problem has been analyzed by several authors, 
including Lele ( 1 985) and Wilcox ( 1 995b ).  Briefly, we imagine a planar source 
of turbulence at x 0 where we maintain constant values of k ko and w W0 
or E Eo for all time. The turbulence source is instantaneously "turned on" at 
time t 0, and a front propagates into the fluid at a finite rate. 

Figure 4 . 14  shows computed dimensionless Vr and w profiles for farfield 
values of w equal to O.OOlwa and 0.5w0 based on the Wilcox ( 1988a) k-w 
model. Both computations have been done with the farfield value of k chosen 

6 Although his nomenclature is incorrect in a strict mathematical sense, Menter refers to a solution 
that differs greatly from the zero freestream boundary conditions solution as being degenerate. 
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Figure 4.14: Turbulent front propagation Wilcox (1 988a) k-w model. The 10 
curves displayed in each graph are computed profiles at 10 different times as 
the front advances to the right. 

so that the farfield eddy viscosity is 10-6 times the value at x 0. The graphs 
all include a family of curves corresponding to 10 different times, with the front 
advancing to the right. The motion of the front is clearly indicated by the vT 
curves ,  which exhibit the sharp interface between the spreading turbulence and 
the nonturbulent fluid. 

Inspection of the curves shows that when the freestream value of w is 0.00lw0, 
the w curves all tend smoothly to the farfield value as the front advances. By 
contrast, when w 0.5w0, the farfield value has a strong effect on the solution. 
It places a large lower bound on w, and causes the solution to have discontinuous 
slope at the front. It also retards the rate at which the front advances. Specifically, 
when w 0.5w0, the rate of advance of the front is only about 40% of the rate 
for w 0.00lw0• Results that follow for the k-E model strongly suggest that 
this effect would be reduced but not eliminated if the computations were 
repeated with cross diffusion included in the k-w model. 
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Figure 4. 1 5 : Turbulent front propagation k-c model. The 10 curves displayed 
in each graph are computed profiles at 10 different times as the front advances 
to the right. 

Figure 4. 1 5  includes similar graphs for the Standard k-c model, corresponding 
to farfield values of c equal to 0.00lc0 and 0.5E0• Again, both computations have 
been done with k= chosen so that the farfield eddy viscosity is 10-6 times the 
value at the origin. The rate of advance of the turbulent front for c 0.5c0 is 
65% of the rate for c 0.00lc0• Thus, while the effect of the farfield condition 
is smaller for the k-c model than for the k-w model, it is nevertheless very 
substantial . 

Clearly, some degree of care must be exercised when selecting freestream 
or farfield boundary conditions for two-equation models. It is not sufficient to 
simply select small values for k and vr, as the choice can imply a nonphysically 
large value of the second turbulence parameter, viz., w, c or £.. In complex flows, 
estimates should be made regarding the peak value of the second variable in 
regions of intense shear, to be sure the freestream value is small enough. To 
be certain appropriately small values are used in the freestream, the values can 
always be adjusted as the computation proceeds. 
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4.5.4 Cross Diffusion 

1 5 1  

There is an interesting relationship between k-E and k-w models (or any pair of 
models whose second variable is kmEn for some m and n) that helps delineate 
some of the key differences. Specifically, if we let E Cp,kw define a change 
of dependent variables from E to w, it is a straightforward matter to demonstrate 
that the resulting equation for w is 

ow 
(v + O'L'r) ox. J 

( *) ok 
(J" - (J" l/ T !.::1 vx· J 

(4. 1 0 1 )  

where /3* -- Cw Also, a, /3, a and u* are simple functions of the k-E model 's 
closure coefficients (see problems section). Focusing on free shear flows, we 
can ignore molecular viscosity, v. Also, if we assume u u* for simplicity, 
Equation (4. 1 0 1 )  simplifies to 

ow 
u 

ow 
8t + i Dx J 

w aui 2 1 ak aw a 
a

kTija - j3 w  +ud 
a a 

+-=a-Xj W Xj Xj Xj 
(4. 1 02) 

where ud 2u. The term proportional to ud in Equation (4. 1 02) is referred to 
as cross diffusion, depending upon gradients of both k and w. 

The cross-diffusion te1m as listed in Equation (4. 1 02) appears only because 
we started with the k-E model. To argue that the cross-diffusion term is "miss
ing" from the k-w model, as several authors have done, assumes the modeled 
E equation is in some sense more fundamental than the modeled w equation. 
Given how poorly the k-E model fares in predicting turbulent flows, especially 
wall-bounded flows (see Sections 4.6 through 4. 1 0), the argument is obviously a 
non sequitur. 

In free shear flows the cross-diffusion term enhances production of w, which 
in tum increases dissipation of k (assuming ud > 0). This occurs for small 
freestream values of k and w, for which both quantities decrease approaching the 
shear-layer edge. The overall effect is to reduce the net production of k, which 
reduces the predicted spreading rates from the values listed in Table 4.5. 

Several authors, including Speziale et al . ( 1 990), Menter ( 1 992c), Wilcox 
( 1 993a), Peng et al. ( 1 997), Kok (2000) and Hellsten (2005) have attempted to 
improve the k-w model by adding cross diffusion. While all have achieved some 
degree of success in wall-bounded flows, the models are far less realistic for 
free shear flows. Inspection of Table 4.5 shows that spreading rates predicted by 
such models differ significantly from measured values. 7 

7The spreading rates predicted by the Speziale et al. k-w model are identical to those of the 
Speziale et al. k-T model, which are much smaller than measured. 
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Menter ( 1992c) and Hellsten (2005) have enjoyed more success with cross 
diffusion than Speziale et al. and Peng et al. Both introduce "blending functions" 
that cause all of the model's closure coefficients to assume values appropriate 
for the k-w model near solid boundaries, and to asymptotically approach values 
similar to those used with the k-E model otherwise. The net result is a model 
that behaves very much like the Wilcox ( 1 988a) k-w model for wall-bounded 
flows, and more like the k-E model for free shear flows. 

Wilcox ( 1 993a) and, more recently, Kok (2000) have tried a similar concept 
with the cross diffusion coefficient, ad, given by 

ak aw < 0 o, ax. ax. -J J 

ado, 
ak aw 

> 0 
ax. ax. . J J 

(4 . 1 03)  

Additionally, the value of a* assumes a value larger than 1 /2.  As we will see 
in Subsection 4.6.2, it is important to suppress this cross-diffusion term close 
to solid boundaries for wall-bounded flows. Just as Menter's blending function 
causes ad to approach 0 near a solid boundary, so does Equation (4. 1 03) since k 
increases and w decreases in the viscous sublayer. While simpler than Menter's 
blending-function approach, Wilcox and Kok chose values for ado that yield 
free shear layer spreading rates that are farther from measurements than those 
predicted by the k-E model. Specifically, Wilcox set ado 3/ 10, a 3/5 and 
a* 1 ,  while Kok opted for ado a 1 /2 and a* 2/3. 

However, other values of the k-w model's closure coefficients exist that yield 
closer agreement with measured spreading rates. Note first that based on the 
analysis of a turbulent front by Lele ( 1 985), there are two necessary conditions 
for the front to propagate. Specifically, we must have 

ado > a*- a and * a > ado ( 4 . 1  04) 

These constraints also follow from analysis of a turbulent/nonturbulent interface 
(see Section 7.2 .2). Figure 4 . 16  shows how predicted spreading rates vary with 
a do for the far wake, the mixing layer and the plane jet. The curves shown have 
been computed with all other closure coefficients as specified in Equations (4.39) 
and (4.4 1 ) .  To isolate effects of cross diffusion, results shown correspond to 
having no stress limiter, i.e., w w in Equation ( 4.36) .  The limiter has virtually 
no effect on the far wake and the plane jet. It reduces the mixing-layer spreading 
rate by less than 6%. Of greatest relevance to the present discussion, the value 
of a* is 3/5. As shown, spreading rates for all three cases are greatest when ado 
is equal to its minimum permissible value according to Equation ( 4. 1 04), viz., 
a do O"* - a. The predicted values decrease monotonically as a do increases 
and fal l  below the lower bound of measured spreading rates for all three cases 
when ado 1 /5, which is much less than the maximum allowable value of 3/5. 
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Figure 4. 1 6: Effect of cross diffusion on free shear flow spreading rates for 
u * 3/5 and u 1/2. The shaded areas depict measured-value ranges. 

Figure 4 . 1 7  shows how predicted spreading rates vary with u * when we set 
u do equal to its minimum pennissible value. As above, computations have been 
done with all closure coefficients other than u* as specified in Equations ( 4.39) 
and ( 4.4 1 )  in the absence of the stress limiter. Computed spreading rates, 8', for 
all three cases decrease monotonically as u* increases. Computed 8' values lie 
above the range of measured 8' for all three cases when u * < 0.55, and below 
when a* < 0. 70. Thus, we conclude that 

0.55 < u* < 0. 70 ( 4.1  05) 

These results provide the rationale for selecting u * 3/5 and O"do -- 1/8 in the 
Wilcox (2006) version of the k-w model [see Equations (4.39) and (4.40)] . 
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4.5.5 The Round-Jet/Plane-Jet Anomaly 

Inspection of Tables 4. 1 ,  4.4 and 4.5 shows that all but two of the turbulence 
models listed predict that the round jet spreads more rapidly than the plane 
j et. The two exceptions are the k-w model and the Robinson et al. ( 1 995) 
enstrophy-equation model. However, measurements indicate the opposite trend, 
with the round-jet spreading rate being about 10% lower than that of the plane 
jet. This shortcoming, common to most turbulence models, is known as the 
round-jet/plane-jet anomaly. 

Pope ( 1 978) has proposed a modification to the E equation that resolves 
the round-jet/plane-jet anomaly for the k-E model. In Pope's modification, the 
dissipation of dissipation term in the E equation is replaced by 

2 E 
c€2 k 

where xp is a "nondimensional measure of vortex stretching" defined as 

(4. 106) 

(4. 1 07) 

The tensors nij and Sij are the mean-rotation and mean-strain-rate tensors de
fined in Equation (4.43). 

Pope's reasoning is that the primary mechanism for transfer of energy from 
large to small eddies is vortex stretching. Any mechanism that enhances vortex 
stretching will increase this rate of transfer. Since the energy is being transferred 
to the smallest eddies where dissipation occurs, necessarily the dissipation, E, 

must increase. Because mean-flow vortex lines cannot be stretched in a two
dimensional flow, xp is zero for the plane jet. By contrast, as shown earlier 
[see Equations (4.89) - (4.96)], the vortex-stretching parameter is nonzero for an 
axisymmetric mean flow. As argued by Pope, this corresponds to the fact that 
vortex rings are being stretched radially. Thus, we expect to have xp =/=- 0 for a 
round jet. 

Using C€3 0 .79 reduces the k-E model 's predicted spreading rate to 0.86, 
consistent with measurements. However, as pointed out by Rubel ( 1 985), the 
Pope correction has an adverse effect on model predictions for the radial jet, 
which also has nonzero xp . Without the Pope correction, the k-E model predicts 
a radial-jet spreading rate of 0.094 which is close to the measured range of 0.096 
to 0. 1 1 0 [see Tanaka and Tanaka ( 1 976) and Witze and Dwyer ( 1 976)] . Using 
the Pope correction for the radial jet reduces the k-E model-predicted spreading 
rate to 0.040. Hence, as noted by Rubel, "the round jet/plane jet anomaly has 
been exchanged for a round jet/radial jet anomaly." 

In contrast to the k-E model, as indicated in Table 4.5, the Wilcox ( 1 988a) 
k-w model predicts comparable spreading rates for both the round and radial 
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jets, both larger than the predicted plane-jet spreading rate. The same is true of 
the k-w model defined in Equations (4.36) - (4.42). When a constant value of 
f3 0.0708 is used for the latter, the predicted round- and radial-jet spreading 
rates are 0. 1 77 and 0. 168 ,  respectively. Numerical experimentation shows that if 
f3 is reduced to 0.06, the model's spreading rates for both the round and radial 
jets are close to the measured values. Since Pope's argument implies nothing 
regarding the functional dependence of the modification upon the dimensionless 
vortex-stretching parameter, xp, it is completely consistent to propose that {3 
depend upon this parameter in a manner that reduces the value of f3 as needed 
for both flows. Thus, as a generalization of the Pope modification, the k-w model 
uses the following prescription for f3. 

(4. 1 08) 

where 

and 

1 + 85xw 
!13 = 1 + lOOxw 

nijnjkski 

(f3*w)3 

(4. 109) 

(4. 1 10) 

Comparison of Equations ( 4. 1 07) and ( 4. 1 1  0) shows that Xw I xp J . Also, the 
functional fonn of f13 is such that its asymptotic value is 0.85, so that j3 0.06 
for large values of Xw· Finally, note that the vortex-stretching parameter normally 
is very small in axisyrmnetric boundary layers because w is very large. 

Interestingly, the Robinson et al. ( 1 995) enstrophy-equation model contains 
a term similar to the Pope modification. The vortex-stretching mechanism that 
it represents plays an important role in the model 's ability to predict the mea
sured spreading rates for all three jets within a few percent of measurements. 
Although the usefulness of Pope's  correction as represented by Equations ( 4. 1 06) 
and ( 4 . 1 07) is limited by a flaw in the k-c model, the concepts underlying the 
formulation are not. We can reasonably conclude that Pope's analysis provides 
a sensible reflection of the physics of turbulent jets, at least in the context of 
w-based two-equation models. 

Our analysis of free shear flows is now complete. In the following sections 
we tum our attention to wall-bounded flows. To demonstrate how two-equation 
models fare for such flows, we are going to use a powerful mathematical tool to 
analyze fine details of model-predicted structure of the turbulent boundary layer. 
In particular, we will use perturbation methods to analyze the various regions 
in the turbulent boundary layer. 
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4.6 Perturbation ysis of the Boundary Layer 

The differential equations for all but the simplest turbulence models are suffi
ciently complicated for most flows that closed-form solutions do not exist. This 
is especially true for boundary layers because of nonlinearity of the convection 
terms and the turbulent diffusion terms attending introduction of the eddy vis
cosity. Our inability to obtain closed-fmm solutions is unfortunate because such 
solutions are invaluable in design studies and for determining trends with a pa
rameter such as Reynolds number, or more generally, for establishing laws of 
similitude. Furthermore, without analytical solutions, our ability to check the 
accuracy of numerical solutions is limited. 

There is a powerful mathematical tool available to us to generate approximate 
solutions that are valid in special limiting cases, viz., perturbation analysis. The 
idea of perturbation analysis is to develop a solution in the form of an asymptotic 
expansion in terms of a parameter, the error being small for sufficiently small 
values of the parameter. Our desire in developing such an expansion is for the first 
few terms of the expansion to illustrate all of the essential physics of the problem 
and to provide a close approximation to the exact solution. Fortunately, this is 
usually the case in fluid mechanics. This section shows how perturbation analysis 
can be used to dissect model-predicted structure of the turbulent boundary layer. 
Appendix B introduces basic concepts of perturbation theory for the reader with 
no prior background in the field. 

4.6.1 The Log Layer 

We direct our focus to the turbulent boundary layer. Experimental observations 
provide a strong argument for using perturbation analysis. Specifically, Coles' 
description of the turbulent boundary layer as a "wake-like structure constrained 
by a wall" (see Figure 3 .9) suggests that different scales and physical processes 
are dominant in the inner (near-wall) and outer (main body) parts of the layer. 
These are concepts upon which perturbation analysis is based. Coles [see Coles 
and Hirst ( 1969)] makes an explicit connection with perturbation theory in saying: 

"The idea that there are two distinct scales in a turbulent boundary 
layer is an old one, although quantitative expressions of this idea 
have evolved very slowly. . . To the extent that the outer velocity 
boundary condition for the inner (wall) profile is the same as the 
inner velocity boundary condition for the outer (wake) profile, the 
turbulent boundary layer is a singular perturbation problem of clas
sical type. In fact, we can claim to have discovered the first two 
terms in a composite expansion, complete with logarithmic behav-. " 
zor. 
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Often perturbation solutions are guided by dimensional considerations and 
a knowledge of physical aspects of the problem. For the turbulent boundary 
layer, we can draw from empirically established laws to aid us in developing our 
perturbation solution. We observe that close to a solid boundary, the law of the 
wall holds. As discussed in Subsection 1 .3 .5,  we can write this symbolically as 

U(x, y) U7 (X )J(u7yjv ) ,  Ur = (4. 1 1 1 )  

Similarly, the main body of the turbulent boundary layer behaves according 
to Clauser's ( 1 956) well-known defect law, viz. ,  

U(x, y) Ue (x) - u7 (x)F[y/ .6-(x)] , (4. 1 1 2) 

The reader should keep in mind that Equation (4. 1 12) only applies to a special 
class of boundary layers, i.e., boundary layers that are self preserving. Thus, we 
seek solutions where F(yj .6.) is independent of x. As we will see, the model 
equations predict existence of such solutions under precisely the same conditions 
Clauser discovered experimentally. 

We develop the leading terms in a perturbation solution for the turbulent 
boundary layer in the following subsections. There are two small parameters 
in our problem, the first being the reciprocal of the Reynolds number. This is 
consistent with the standard boundary-layer approximations. The second small 
parameter is u7/Ue. Clauser's defect law suggests this parameter since the ve
locity is expressed as a (presumably) small deviation from the freestream velocity 
that is proportional to Ur - The analysis will lead to a relation between these two 
parameters. 

The analysis in this section, which is patterned after the work of Bush and 
Pendell ( 1 972) and Pendell ( 1 972), shows in Subsection 4.6.3 that the inner 
expansion is of the form quoted in Equation ( 4. 1 1 1 )  and is valid in the viscous 
sublayer (see Figure 3 .8). We also show in Subsection 4.6.2 that the outer 
expansion is identical in form to Equation (4. 1 12) and holds in the defect layer. 
Formal matching of the sub layer and defect-layer solutions occurs in an overlap 
region that is often described as the log layer. In fact, the common part of 
the inner and outer expansions is precisely the law of the wall. Thus, although 
it is not formally a separate layer, establishing flow properties in the log layer 
permits independent analysis of the sublayer and defect layer. It also forms the 
basis of surface boundary conditions for many two-equation turbulence models. 
We discuss the log layer in this subsection. 

Before performing any analysis, we anticipate that we will be solving a 
singular-perturbation problem. We expect this, but not because of a reduction 
in order of the differential equations. Rather, we have no hope of satisfying the 
no-slip condition with our outer solution because of the assumed form in the 
defect layer, i .e. , velocity being a small perturbation from the freestream value. 
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Likewise, the sublayer solution, if it is consistent with measurements, predicts 
velocity increasing logarithmically with distance from the surface as y ) oo so 
that we cannot satisfy the freestream boundary condition with our inner solution. 
This is  the irregular behavior near boundaries alluded to in Appendix B where 
we define a singular-perturbation problem. 

We begin our analysis with the incompressible boundary-layer equations. 
Conservation of mass and momentum are sufficient for establishing the form of 
the expansions, so that we have no need to introduce the model equations now. 
For two-dimensional flow, we have 

au
+ 

av 
0 

ax ay 

u au 
+ v 

au 1 dP a 
ax ay = - p dx + -ay 

au 
(v + vT) ay 

(4. 1 1 3) 

(4. 1 1 4) 

The easiest way to arrive at the log-layer equations is to derive the sublayer 
equations and then to detetmine the limiting f01m of the sublayer equations for 
y+ oo .  Consistent with the normal boundary-layer concept that variations in 
the streamwise (x) direction are much less rapid than those in the normal (y) 
direction, we scale x and y differently. Letting L denote a dimension character
istic of distances over which flow properties change in the x direction, we scale 
x and y according to 

x/L and (4. 1 1 5) 

The appropriate expansions for the streamfunction and kinematic eddy viscosity 
are 

'1/Jinner (X ' Y) 

VTinner (x, y) 
v [fo(�,  y+ ) + t/Jd1 (�, y+ ) + 0(¢2)] 
v [No(cE, y+ ) + t/J1N1 (.; , y+) + 0(¢2)] 

(4. 1 1 6) 

(4. 1 1 7) 

where the asymptotic sequence { 1 ,  ¢1 , ¢2 , . . .  } is to be determined. Conse
quently, the streamwise velocity becomes 

Substituting into the momentum equation, we obtain 

a 
ay+ 

auo 
(1 + No) ay+ + 0(¢1 ) 

6* 
L 

(4. 1 1 8) 

(4. 1 1 9) 

where the quantity {3T is the so-called equilibrium parameter [see Coles and 
Hirst ( 1969)] defined by 

6* dP 
{3T = -- -:-

Tw dx (4. 120) 
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In general, we regard (3T as being of order one. In fact, when we analyze 
the defect layer, this will be the key parameter quantifying the effect of pressure 
gradient on our solution. Additionally, ur6* / v :» 1 and 6* � L. Hence, we 
conclude that 

and 
{) 

f)y+ 

1/ 

8uo 
(1 + No)  ay+ 

(4. 1 2 1 )  

= 0 (4. 122) 

To enhance physical understanding of what we have just proven, it is worth
while to return to dimensional variables. We have shown that, to leading order, 
the convective terms and the pressure gradient are small compared to the other 
terms in the sublayer so that the momentum equation simplifies to 

= 0 (4. 1 23) 

Integrating once tells us that the sum of the specific molecular and Reynolds 
shear stress is constant in the sublayer, i.e., 

aU (v + vT) {)y p (4. 1 24) 

Equation (4. 1 23) or (4. 124) is the equation for the leading-order term in the 
inner expansion for a turbulent boundary layer. As we will demonstrate in greater 
detail in Subsection 4.6.3, we can satisfy the no-slip condition (U = 0) at y = 0 
while the solution as y+ oo asymptotes to the law of the wall, i .e., velocity 
increasing logarithmically with distance from the surface. Another feature of the 
solution is that the eddy viscosity increases linearly with y+ as y+ oo so 
that the eddy viscosity becomes very large compared to the molecular viscosity. 
Consistent with this behavior, the molecular viscosity can be neglected in Equa
tion (4. 123) or (4. 1 24) for the limiting case y+ oo . As noted above, we refer 
to the form of the differential equations in this limit as the log-layer equations. 
Thus, we conclude that in the log layer we can neglect convection, pressure gra
dient and molecular diffusion. The momentum equation thus simplifies to the 
following: 

8 aU 
0 = {)y 

1/T {)y 
(4. 125) 

To the same degree of approximation, in the log layer, the k-w model equations 
for two-dimensional flow (so that Xw 0 ==? (3 f3o) simplify to: 
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k-w Model: 

0 = Vr 

0 - a 

k Vy = - ' w 

au 
ay 

au -::--
ay 

2 

-w 

2 a 
- {3*wk + a* 

ay 
k ak 
w ay 

{3 2 ad ak aw a 
- oW + 

a a 
+ a

a w y y y 

au1ay max w, Clim (3* 

k aw 
w ay 

(4. 1 26) 

As can be shown by direct substitution, the solution to Equations (4. 1 25) and 
(4. 126) is 

Ur 
U = --f.ny + C, 

K, * ' 
w (4. 127) 

where C is a constant and the implied value of the Karman constant, K, is 

{3* (f3o I {3* - a) I a (4. 1 28) 

Note that the terms proportional to a* and ad disappear because aklay 0 .  
Also, because Equation (4. 127) tells us that au lay {3*w, there follows 
w max{ w, Cumw} w, i .e., the stress limiter has no effect in the sublayer. 
The closure coefficient values specified in Equation (4.39) have been chosen to 
give K 0.40. We discussed the log-layer solution in Section 4.4 to illustrate 
how values for some of the closure coefficients have been selected. There are 
additional features of the solution worthy of mention. For example, the eddy 
viscosity varies linearly with distance from the surface and is given by 

(4. 129) 

This variation is equivalent to the mixing-length variation, fmix Ky. Also, the 
ratio of the Reynolds shear stress to turbulence kinetic energy is constant, i .e., 

Txy = (3* k 

In a similar way, the k-E model equations simplify to the following: 

k-E Model: 

0 
au 2 a - E +-::--
ay ay 

au 
ay 

2 2 E - c€2 k 
a 

+ ay 
Vr ae 
a€ ay 

(4. 1 30) 

(4. 1 3 1 ) 
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The solution to Equations (4. 1 25) and (4. 1 3 1 ) is 

Ur 
U = fny + constant , 

/'\, 
k =  

u2 
T 

c ' J.L 

where we again find an implied value for the Karman constant, K, viz. , 

161  

(4. 1 32) 

(4. 1 33) 

Using the closure coefficient values for the Standard k-f model [Equation (4.49)], 
K assumes a somewhat large value of 0.433 .  For the RNG k-f model [Equa
tions (4.5 1 ) - (4.53)], we find K = 0.399. 

Keep in mind that the turbulent boundary layer consists of the sub layer and 
the defect layer. The sublayer is a thin near-wall region, while the defect layer 
constitutes most of the boundary layer. In the spirit of matched asymptotic ex
pansions, the log layer is the overlap region which, in practice, is usually much 
thicker than the sublayer (see Figure 3 .8) .  Part of our reason for focusing on 
this region of the boundary layer is of historical origin. Aside from the k-w 
model, most two-equation models fail to agree satisfactorily with experiment in 
the viscous sublayer unless the coefficients are made empirical functions of an 
appropriate turbulence Reynolds number (which we discuss in Subsection 4.9. 1 ) .  
Consequently, the log-layer solution has often been used as a replacement for 
the no-slip boundary condition. Early k-f model solutions, for example, were 
generated by enforcing the asymptotic behavior given in Equation ( 4. 1 32). We 
must postpone further discussion of surface boundary conditions pending detailed 
analysis of the sub layer. Analysis of the log layer can also prove useful in deter
mining leading-order effects of complicating factors such as surface cunrature, 
coordinate-system rotation, and compressibility. As our most immediate goal, we 
have, in effect, done our matching in advance. Thus, we are now in a position 
to analyze the defect layer and the sublayer independent of one another. We tum 
first to the defect layer. 

4.6.2 The Defect Layer 

In this subsection, we make use of singular-perturbation methods to analyze 
model-predicted structure of the classical defect layer, including effects of pres
sure gradient. Our analysis includes three turbulence models, viz. : the Wilcox 
(2006) k-w model; the Standard k-E model; and the RNG k-f model. First, 
we generate the perturbation solution. Next, we compare solutions for the three 
models in the absence of pressure gradient. Then, we examine effects of pressure 
gradient for the models. Finally, as promised in Section 4.4, we further justify 
the values chosen for a, a* and ad in the k-w model. 
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To study the defect layer, we continue to confine our analysis to incompress
ible flow so that we begin with Equations (4. 1 1 3) and (4. 1 14). The perturbation 
expansion for the defect layer proceeds in terms of the ratio of friction velocity 
to the boundary-layer-edge velocity, Ur /Ue, and the dimensionless coordinates, 
� and rJ, defined by 

= x/L and = y/ �(x) ,  (4. 1 34) 

where J* is displacement thickness and L is a characteristic streamwise length 
scale that is presumed to be very large compared to 8* . As in our approach 
to the log layer, we first establish the general form of the solution for the mean 
momentum equation. We expand the streamfunction and kinematic eddy viscosity 
as follows. 

'1/Jouter(X, y) 
e 

Ueo* [No (�, rJ) + o(l))  

(4. 1 35) 

(4. 1 36) 

Observe that, as is so often the case in perturbation analysis, we needn't 
continue the expansions beyond the first one or two terms to capture most of the 
important features of the solution. For the specified streamfunction, the velocity 
becomes: 

' (4. 1 37) 

Substituting Equations ( 4. 1 34) - ( 4. 1 3  7) into the mean conservation equations 
[Equations (4. 1 1 3) and (4. 1 14)] yields the transformed momentum equation, viz., 

(4 . 1 38) 

Where the parameterS CtT, (3T , ()" T and WT are defined in termS Of 0*, U7 and Skin 
friction, CJ 2(ur/Ue )2 , i.e., 

2 do* 
CJ dx ' 

8* dP 
(3T = ' 

Tw dx 
( 4. 1 39) 

Equation (4. 1 38) must be solved subject to two boundary conditions. First, 
to satisfy the requirement that U Ue as y oo ,  necessarily 

0 as 00 (4. 140) 

Also, we must asymptote to the log-layer solution as 'rf ----+ 0. One way to insure 
this is to insist that 

1 
- - as 0 (4. 14 1 )  
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At this point, we have not greatly simplified our problem. Equation (4. 1 38), 
like the original momentum equation, is a partial differential equation. The only 
simplification thus far is that molecular viscosity is negligible relative to the eddy 
viscosity. However, even this is not necessarily advantageous since the no-slip 
velocity boundary condition has been replaced by singular behavior approaching 
the surface. And, of course, we are now working in a transformed coordinate 
system (e, ry) rather than the familiar Cartesian coordinate system (x ,  y). So why 
go to all this trouble? The answer is, we have only just begun. 

Reexamination of the steps we have taken thus far should reveal a familiar 
tack; specifically, we appear to be developing a similarity solution. Indeed this is 
intentional, and inspection of Clauser's defect law [Equation (4. 1 12)] shows that 
there has been method in our madness. Comparison of Equation (4. 1 1 2) with 
the assumed fotm of our perturbation expansion for U given in Equation (4. 1 3 7) 
shows that U1 must be a function only of "1· Thus, we now pose the question as 
to what conditions must be satisfied in order for a similarity solution to exist. 

Clearly, the coefficients aT, j3T and wT must be independent of x, for then 
the coefficients of all terms on the right-hand side of Equation (4. 1 38) will 
be independent of x .  The coefficient aT is of no consequence since, if U1 is 
independent of x ,  the left-hand side of Equation (4. 138) vanishes regardless of 
the value of aT . 

The coefficients aT and wT are simple algebraic functions of j3T. To show 
this, we begin by performing the formal matching of the defect-layer and sublayer 
solutions. As shown in the preceding section, 

( + 1 + Uinner e, Y ) "'-' Ur -f.ny + C 
K, 

as y+ - 00 (4. 142) 

Assuming that a similarity solution exists so that U1 depends only upon ry, 
straightforward substitution into Equation (4 . 1 38) with a vanishing left-hand side 
shows that 

---+ 0 (4. 143) 

where the constants u0 , ·u1 .  . . . depend upon the complete solution which, in tum, 
depends upon what turbulence model is used. We now do a formal matching of 
the inner and outer expansions noting that y+ ryReo* and the outer solution is 
uouter(e, ry) "'  [Ue - UrUl (TJ) + . . -] .  To match through first order, we require 
the following: 

1 
-f.ny+ + C -
K, 

Hence, we conclude from matching that: 

C +  uo 
K, 

0 as y+ -

1 + -f.nReo* 
K, 

oo ,  rJ - 0 (4. 144) 

(4. 145)  
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This is a useful result that enables us to compute the skin friction from our 
defect-layer solution, a point we will return to later. For our present purpose, 
Equation (4. 1 45) enables us to determine Wr . That is, since 

Differentiating with respect to x yields 

dur 
dx 

-

Ur dUe u;_ dReo* -
Ue dx "'UeReo* dx 

(4. 1 46) 

(4. 1 47) 

Substituting Equation (4. 1 47) into the definition of Wr [see Equation (4. 1 39)] 
and using the fact that u;_ � u; c 1, we find 

8* dUe 8* �U'1c1 d Ue8* -
CJUe dx CJUr "'u;8* jv dx v 

8* dUe d -- -- -
1 

(Ue8* ) 
CfUe dx 21'\,Ur dx 

8* 1 _ .!_ C f Ue dUe _ 1 Ue d8* 
CfUe K, 2 Ur dx 21'\, Ur dx 

8* 1 _ .!_ Ur dUe _ 1 Ue d8* 
CfUe K, Ue dx 2"' Ur dx 

(4. 148) 

We can compute d8* jdx and dUe/dx from the definitions of O:r and f3r given 
in Equation ( 4. 1 39), i.e., • 

d"* u 
= 

Cf O:r 

dx 2 
and 

Combining Equations (4. 1 48) and (4. 1 49), we have 

-

1 - - f3r 
2 

1 Ur 1 -- - -
"' Ue 

_ Tw f3r _ 1 Ue 
p Ue8* 21'\, Ur 

1 _ .!_ Ur 
1'\, Ue 

1 Ue f3r -
41'\, Cf Ur 

O:r 

(4. 1 49) 

(4. 1 50) 
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Therefore, regrouping terms, we conclude that 

1 1 ( ) 
Ur 

WT - 2{3T + 
2K 

{3T - aT 
Ue 

Finally, since we seek a solution valid in the limit ur/Ue -

1 Ur 
WT = -- -2 {3T + Q Ue 

0, we have 

1 65 

(4. 1 5 1 ) 

(4. 1 52) 

Note that Bush and Fendell (1 972) incorrectly argue that wT o(l) in the limit 
ur /Ue 0. Using arguments similar to those above, Tennekes and Lumley 
( 1983) and Henkes ( 1 998a) also show that wT is given by Equation (4. 1 52). 

This reduces the requirement for existence of a similarity solution to only 
aT and {3T being independent of x. However, we can also show that aT and 
f3T are uniquely related to leading order. To see this, we examine the classical 
momentum-integral equation that follows from integrating the mean-momentum 
equation across the boundary layer [ c.f., Gersten-Schlichting ( 1 999)], viz., 

CJ dfJ 0 dP 
(4. 1 53) 

where (J is momentum thickness and H 6* /0 is the shape factor. In tenns of 
aT and {3T, the momentum-integral equation can be rewritten as 

dO 
aT

dx 
= 

(2 + H) db"* 
1 + 

H {3T 
dx 

(4. 1 54) 

If we evaluate the displacement and momentum thickness using our pertur
bation solution we find two important facts. First, evaluating the displacement 
thickness integral yields an integral constraint on our solution for U1 , U2 , etc. 
Second, we find to leading order that 6* and (J are equal, i.e., the shape factor 
approaches 1 as Re6* oo and/or Ur /Ue 0. The proof of these facts is 
straightforward and thus left for the problems section; the results are: 

(X) 

0 

H rv 1 + 0  

1 ,  0 ,  n > 2  
0 

as Re15* oo ,  
Ue Ue 

-

0 

(4. 1 55) 

(4. 1 56) 

The perturbation solution for U1 ( 7J) provides sufficient information to determine 
the O (ur/Ue )  term8 for H (see problems section). Hence, Equation (4. 1 54) 
yields the following relationship between aT and {3T.  

(4. 1 57) 

8 The coefficient of this term is generally large, and realistic shape factors (e.g., H � 1 . 3 for a 
flat-plate) follow from the perturbation solution. 
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Thus, we see that the requirement for existence of a similarity solution to 
Equation (4. 1 38) for large Reynolds number is simply that the equilibrium pa
rameter, f3T, be constant. This is a very satisfactory state of affairs because it 
is consistent with experimental observations at finite (laboratory-scale) Reynolds 
numbers. That is, Clauser found that, outside the viscous sublayer, turbulent 
boundary layers assume a self-similar form when the equilibrium parameter is 
constant. 

Appealing to Equations (4. 1 52) and (4. 1 57), the coefficients appearing in 
Equation (4. 1 38) are 

(4. 1 58) 

Then, the problem we must solve to determine U1 ( 'T}) is: 

(4. 1 59) 

1 
as 'T} ---+ 0 and 00 ( 4. 1 60) 

The integral constraint, Equation ( 4. 1 55), must also be enforced. The dimension
less eddy viscosity, No('T]) , depends upon the turbulence model selected. For our 
purposes, we will consider three different turbulence models, viz. : the Wilcox 
(2006) k-w model [Equations (4.36) - (4.42)] ;  the Standard k-E model [Equa
tions (4.46) - (4.49)] ; and the RNG k-E model [Equations (4.46) - (4.48) and 
(4. 5 1 ) - (4.53)]. 

Making standard boundary-layer approximations for the model equations, we 
seek a perturbation solution for k, w and E of the following form. 

(4. 1 6 1 )  

Note that for the k-E models, we make the identification /3* Cw The precise 
form of the equations and auxiliary relations are specific to each model . The 
transformed equations are as follows. 
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k-w Model: 

* d u 
d1J 

d u 
d1J 

+ 

Ko dKo 
Wo d1J 

(3* No 

Ko dWo 
Wo d1J 

dKo 
+ (1 + 2/3r )17 d1] 

+ 2f3rKo 

2 

- WoKo 

dWo 
+ ( 1 + 2,Br)1J d1] 

+ (1 + 4f3r)Wo 

+ 
Wo (3* aNo r:. L(O 

+ 
ud dKo dWo 

0 
Wo d1J d1J 

No 

k-€ Model: 

Ko - , 
Wo 

d - 1  uk -d-1] 

N. dKo 
0 d1] 

+ 

+ 

No 

Cf-L No 

N. dEo 
0 d1] 

K5 
Eo 

dKo 
+ (1 + 2f3r )17 d1]

- + 2f3rKo 

2 

- Eo 0 

dEo 
+ ( 1 + 2f3r )17 d1] 

+ (1 + 6f3r )Eo 

(4. 1 62) 

(4. 1 63) 

We must specify boundary conditions on the dimensionless functions K0, W0 
and Eo both in the freestream and approaching the surface. For nonturbulent 
flow in the freestream, we require that the turbulence parameters all vanish as 
the similarity variable 1J oo. However, we also stipulate that these quantities 
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approach zero in such a way that the transformed eddy viscosity, N0, vanishes.9 

Thus, the freestream boundary conditions are 

Ko (rJ) � 0, Wo (rJ) - 0,  Eo (ry) � 0, U1 (17) - 0 as 17 � oo (4. 164) 

Approaching the surface, we must formally match to the law of the wall. 
Matching is a bit different for each model but is nevertheless straightforward; 
we omit details of the algebra in the interest of brevity. The limiting forms used 
for 17 0 are 

K0(ry) "' [1  + k1 ryCnry + · · ·] 
1 

Eo (rJ) "' [1  + e1r]f!nry + · · ·] 
1'\,f/ 

1 
Wo(ry) "' [1 + w1ryf!nry + · · ·] 

1'\,f/ 

1 
U1 (17) "' - [-l!nry + uo - u1ryf!nry + · · ·] 

1'\, 

(4. 1 65) 

The coefficients k1 ,  u1 ,  w1 and e1 are given below, where for notational consis
tency, we define 

(4. 166) 

Also, we write some of the results in terms of CT* with the understanding that 
CT* ·- 1 /  ak for the k-E models. 

All Models: 

k-w Model: 

[,60/ (o:,B* ) + CTdo/ (o:CT*) ] [CT* 1'\,2 / (2o:* )] 
k 

1 - f3o/ (o:,B* )  
1 

Standard k-E Model: 

1 - f3o/ (o:,B* )  
1 

(4. 167) 

(4. 1 68) 

(4 . 1 69) 

9The k-w model also has a similarity solution with W0 approaching a nonzero value in the 
freestream. It is the solution that normally prevails and is used in Program DEFECT. 
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RNG k-E Model: 

Ul { (a-€12) [11a-€ - a-* (Cd - c�2)] - [1 + a-* K2 I (2a*)] } kl 
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e1 (a-€12) [11a-€ - a-* (GEl - C�2)) k1  (4. 1 70) 

Additionally, the coefficient u0 is determined from the integral constraint for 
mass conservation, which is the first of Equations (4. 1 55). Table 4.6 summarizes 
the equations for the leading-order terms in the defect-layer solution. 

Table 4.6: Summary of the Defect-Layer Equations. 

Mass Conservation (Integral Constraint) Equation (4. 15 5) 
Momentum Conservation Equation ( 4. 1 59) -
Velocity Boundary Conditions Equation (4. 1 60) 
Turbulence Energy, Specific Dissipation (k-w Model) Equation (4. 1 62) 
Turbulence Energy, Dissipation (k-E Model) Equation (4. 1 63) 
k, w, E Boundary Conditions for '1J CX) Equation ( 4. 1 64) 
k, w ,  E Boundary Conditions for '1J . o  Equation (4. 1 65)  

Before proceeding to discussion of the defect-layer similarity solution, there 
are two quantities of interest that follow from the leading-order solution, viz., 
the skin friction, Cf, and Coles' wake-strength parameter, II. Recall that 
from matching defect-layer and sublayer velocity profiles, we deduced Equa-
tion (4. 1 45). Noting that Cf 2(u7IUe)2 , we conclude that 

2 
CJ C +  uo 

"' 
1 + -fnRe,s• "' (4. 1 7 1 )  

The composite law of the wall, law of the wake profile according to Coles' 
meticulous correlation of experimental data [see Coles and Hirst ( 1 969)] is given 
by 

u 2II . 2 1r y 
+ C + "' sm 2 b (4. 1 72) 

The sin2 function is purely a curve fit: several other functions have been sug-
gested, including forms that yield &U I &y 0 at y 6 [which is not the case 
for Equation (4. 1 72)] . At the boundary-layer edge, y 6, we have 

2II 
+ C + -"' (4. 1 73) 
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Figure 4. 1 8 : Comparison of computed and measured defect-layer velocity pro-
files; k-w model; - - - Standard k-E model; · · · · RNG k-E model. 

Combining Equations (4. 1 45) and (4. 1 73) and canceling the constant C yields 

Hence, solving for II, we find 

1 1 Ueo* 
IT = - u0 + -Rn 

2 2 1/ 

2II uo 1 /) 
R + = + -{:,n e0• 

/'\, I\, 
(4. 1 74) 

(4. 1 75) 

Finally, defect-layer solutions include sharp (nonphysical) turbulent/nonturbulent 
interfaces so that the edge of the defect-layer lies at a finite value 'IJ 'IJe, i.e., 

(4. 1 76) 

Therefore, combining Equations (4. 1 75) and (4. 1 76) leads to the following ex
pression for the wake-strength parameter. 

1 
II = 

2 
( uo - Rnrye ) (4. 1 77) 

Figure 4 . 1 8(a) compares the defect-layer solution for the three models with 
corresponding experimental data of Wieghardt as tabulated by Coles and Hirst 
( 1 969). The experimental data presented are those at the highest Reynolds num
ber for which data are reported. This is consistent with the defect-layer solution 
that is formally valid for very large Reynolds number. As shown, all three models 
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Figure 4. 19 :  Computed and measured wake-strength parameter; k-w model; 
- - - Standard k-E model; · · · · RNG k-E model; - - Baldwin-Barth model. 

predict velocity profiles that differ from measured values by no more than about 
three percent of scale. Thus, based on analysis of the constant-pressure defect 
layer, there is little difference amongst the three models. 

Turning now to the effect of pressure gradient, we consider defect-layer solu
tions for the equilibrium parameter, (3T, ranging from -112 to +20, where positive 
(3T corresponds to an adverse pressure gradient. The choice of this range of (3T 
has been dictated by the requirement of the perturbation solution that (3T be con
stant. This appears to be the maximum range over which experimental data have 
been taken with (3T more-or-less constant. Figure 4 . 1 8(b) compares computed 
velocity profiles with experimental data of Clauser [see Coles and Hirst ( 1969)] 
for (3T 8.  7. As shown, the k-w model yields a velocity profile that is within 
3% of measurements while the k-E models show much larger differences. 

Figure 4. 19  compares computed wake strength, II, with values inferred by 
Coles and Hirst ( 1 969) and Skare and Krogstad ( 1 994) from experimental data. 
In addition to results for the two-equation models, the figure includes predicted 
II according to the Baldwin-Barth (1 990) one-equation model. Inspection of Fig
ure 4. 1 9  reveals provocative differences amongst the four models. Most notably, 
the k-w model yields wake strengths closest to values inferred from data over 
the complete range considered. Consistent with the velocity-profile discrepan
cies shown in Figure 4. 1 8(b ), the k-E models exhibit much larger differences, 
with predicted wake strength 30%-40% lower than inferred values when (3T is 
as small as two! Also, the Baldwin-Barth model predicts values of II that are 
typically 30% higher than measured. 
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To appreciate the significance of these results, observe that since we know 
Ue/u-r 2/cf , we can rewrite Equation (4. 1 73) as follows. 

C 2II 
+ + 

K 
(4. 1 78) 

Although this is not an explicit equation for c f as a function of II, if we assume 
the logarithmic term varies more slowly than the term proportional to II, reducing 
the value of II increases the value of c f , and vice versa. This indeed turns out 
to be the case as summarized in the following observations. 

1 .  If a model ' s  predicted values of II are smaller than measured, its predicted 
skin friction is larger than observed. We will see in Sections 4.8 through 
4 . 1 0  that the k-€ model consistently predicts values of skin friction that 
are significantly larger than measured. 

2 .  If the values of II are larger than measured, predicted skin friction is smaller 
than observed. Inspection of Figure 4.4 confirms that the Baldwin-Barth 
model predicts skin friction values that are substantially below correspond
ing measured values. 

3 .  If a turbulence model predicts values of II similar to measured values 
over the entire range of f3T, its skin-friction (and other boundary-layer 
property) predictions will be consistent with measurements. We will see 
in subsequent sections and chapters that the k-w model accurately predicts 
boundary-layer properties, including effects of pressure gradient. Although 
we have not shown the results here, the Baldwin-Lomax, Cebeci-Smith, 
Johnson-King and Spalart-Allmaras models all predict II versus f3T curves 
that are much closer to the k-w curve than the Baldwin-Barth and k-E 
models. Correspondingly, they all predict boundary-layer features that are 
reasonably close to measurements (cf. Figures 3 . 1 7, 3 . 1 9  and 4.4). 

Thus, we see that using perturbation methods to analyze the defect layer pro
vides an excellent test of how well any turbulence model will ultimately perform 
for attached boundary layers. Although the analysis is confined to equilibrium 
boundary layers, in the sense that f3T is constant (and is strictly valid only in the 
limit of very large Reynolds number), it is nevertheless an objective and impor
tant test. This is true because, if the boundary layer is not changing too rapidly, 
its properties will be consistent with those of the equilibrium case corresponding 
to the local value of f3T . 
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Table 4.7: Coefficients A, B, L and IT for f3T = 20. 

I Model I A I E l  L j n j  
::;:::::: 5.81 T -4.42 6.88 k-w (1988a) 25.89 

k-w (2006) 24.87 8.88 -5.58 6.54 
Standard k-E 15.67 30.51 -13.02 4.85 
RNG k-€ 11.96 36.07 -15.39 3.82 
Measured -- 6.80 
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The explanation of the k-E models' poor performance for adverse pressure 
gradient can be developed from inspection of asymptotic solution behavior as 
'fJ 0. For the models analyzed, the velocity behaves as 

U - U  1 e 
,......, - -fnr] + A - f3TB1}fn1} + · · · 

Ur /'i, 
as 

where Table 4.7 summarizes the constants A and B, defined by 

and 

0 (4. 1 79) 

(4 . 1 80) 

Note that, while the coefficient A is determined as part of the solution (from 
the integral constraint that mass be conserved), the coefficient B follows directly 
from the limiting form of the solution as 17 0. As seen from Table 4. 7, B is 
largest for the RNG k-E model and is smallest for the Wilcox ( 1 988a) k-w model, 
which has no cross diffusion. Because the coefficient of its cross diffusion term 
is not very large, B is relatively small for the Wilcox (2006) k-w model. The 
presence of the r]fnr] tenn gives rise to an inflection in the velocity profile as 
17 0 that is most pronounced for the k-E models. 

In terms of turbulence properties, the turbulence length scale, .e, behaves 
according to 

as 0 (4. 1 8 1 )  

Table 4 .  7 also includes the coefficient L for each model. Again, we see that the 
contribution of the r]fnr] term is much larger for the k-E models than it is for 
the k-w models. Thus, for adverse pressure gradient, the k-E models' turbulence 
length scales tend to be too large in the near-wall region. Note, of course, that 
this shortcoming is not evident in the constant-pressure case, which has f3T 0. 

The manner in which the k-w model achieves smaller values of .e than the 
k-E models can be seen by changing dependent variables. That is, starting with 
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the k-w formulation and defining E f3*wk, we can deduce the following in-
compressible equation for E implied by the k-w model . 10 

8x &y 
&U 

2 

&y 
-

-

€2 & 
( 1 + f3o/ /3* )  

k + &y 

2 
&k 8(Ejk) 

OVT 
&y &y 

(4. 1 82) 

All terms except the last on the right-hand side of Equation ( 4. 1 82) are 
identical in form to those of the Standard k-E model [see Equation ( 4.48)] . The 
cross-diffusion term, which is discussed in detail in Subsection 4.5.4, is negligi
bly small as rJ · > 0 for constant-pressure boundary layers because k constant 
as rJ 0. However, &kf&y is nonvanishing when f3T i= 0 and &(E/k)f&y 
generally is quite large as rJ 0. The net effect of this additional term is to 
suppress the rate of increase of f close to the surface. 

We can draw an important conclusion from these observations about cross 
diffusion. Specifically, with a change of dependent variables to w from the second 
parameter being used (e.g., E, £, r), any two-equation model can be rewritten as 
a k-w model. In general, the implied equation for w includes a cross-diffusion 
term. Since excessive amounts of cross diffusion have such an undesirable effect 
on boundary-layer predictions, additional corrections to the model will be needed 
to counter the undesirable effects of the term. Rodi and Scheuerer ( 1 986), Yap 
( 1 987) and Henkes ( 1998b), for example, have proposed corrections to the k-E 
model which implicitly counter the effects of cross diffusion (relative to the k-w 
model) with varying degrees of success. 

As with free shear flows, the freestream value of w has an effect on k-w 
model defect-layer solutions when the freestream eddy viscosity is negligibly 
small. However, the sensitivity is far less significant than it is for free shear 
cases (see Subsection 4.5.3), even when the k-w model has no cross diffusion 
term. The freestream value of E has virtually no effect for the k-E model. 

Computations done using Program DEFECT (see Appendix C) demonstrate 
the sensitivity. All computations have been done with f3T 0 and have a 
freestream eddy viscosity of N ( 'r/e) 10-4. Self-similar solutions exist for 
Wo (rJe) 0 and for Wo (rJe ) * /f3o 4.24, which is a relatively large 
value. Regarding this as the upper bound on Wo (rJe) ,  computations have been 
performed to determine the sensitivity of skin friction, c f ,  to the freestream value • 
of Wo . 

Figure 4.20 shows the variation of Cf with vVo (rJe ) ·  The quantity Cfo denotes 
the value of c f for zero freestream conditions. As shown, the effect is small .  
For the largest value of Wo(rJe) ,  the change in c1 is less than 3%. Note that, in 

lOTh is equation was derived assuming a = a* and ad = 0 to simplify the algebra. With a =!= a* 
there is an additional benign diffusion that is of no consequence to the present discussion. 
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Figure 4.20: Effect of the freestream value of w on k-w model skin friction. 

typical numerical computations, large values of w diffuse from the wall toward 
the boundary-layer edge, so that Wo ('lJe) normally tends toward * /{30, which 
corresponds to U dw / dx -{30w2 in the freestream. 

Equation (4. 1 68) shows that the coefficient B ui/(f3r K) is proportional to 
0'* , so that smaller values of 0'* enhance the model' s  predictions for boundary 
layers with variable pressure. The computed variation of IT with f3r (Figure 4. 1 9) 
closely matches experimental results when 0'* 3/5 and O'do 1/8. Thus, our 
analysis of free shear flows and of the defect layer provides further credence to 
the values of these coefficients that have been chosen for the k-w model. 

However, we have implicitly assumed that the appropriate value for 0' is 
1/2 and promised to justify this choice later. In Subsection 4.6 .3, we will find 
that using 0' 1/2 yields an excellent solution in the viscous sublayer, almost 
independent of the values of 0' * and 0' do.  

4.6.3 The Viscous Sublayer 

In order to facilitate integration of the model equations through the viscous sub
layer, we must, at a minimum, have molecular diffusion terms in the equations of 
motion. Potentially, we might also have to allow the various closure coefficients 
to be functions of viscosity (i.e., turbulence Reynolds number) as well. This 
should come as no surprise since even the mixing-length model requires the Van 
Driest damping factor and one-equation models need similar viscous damping 
[Wolfshtein ( 1 967), Baldwin and Barth ( 1 990), Spalart and Allmaras ( 1 992)] . 
In this section, we use perturbation methods to analyze viscous-sub layer structure 
predicted by several two-equation models. As we will see, with the exception 
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of some k-w models, virtually all two-equation models require Reynolds-number 
dependent corrections in order to yield a realistic sublayer solution. 

We have already derived the sublayer solution in Subsection 4.6. 1 when we 
discussed the log layer. Recapping the highlights of the expansion procedure, 
the velocity is given by an expansion of the form 

(4. 1 83) 

To leading order, the convective terms and pressure gradient are negligible. Thus, 
for example, the leading-order equations for the k-w model expressed in tenns 
of dimensional quantities are given by 

d 
dy 

dk dU 
dy 

2 

2 
- {3*wk 0 

k 
v + cr 

w 
dw 
dy 

+ a 
dU 
dy 

crd dk dw 
{3 2 + 

d d 
- oW 

w y y 

k -
w = max C dUjdy 

W ,  lirn * 

0 
(4. 1 84) 

Because the Reynolds shear stress is constant, the viscous sublayer is often 
referred to as the constant-stress layer. Five boundary conditions are needed 
for this fifth-order system, two of which follow from matching to the law of the 
wall as y+ oo, viz., 

k --r  
{3* 

as y+ --r oo  (4. 1 85) 

where y+ ury/v. Two more boundary conditions follow from no slip at the 
surface, which implies that U and k vanish at y 0. Thus, 

u k 0 at ( 4. 1 86) 

The final condition follows from examination of the differential equations 
for k and w approaching the surface. The k-w model possesses two kinds of 
solutions. The first type of solution has a finite value of w at the surface. This 
fact was first observed by Saffman ( 1 970) who speculated that the constant in 
the law of the wall, C, would vary with the surface value of w. This feature is 
unique to k-w and k-w2 models and we will explore it in detail in Section 4.7. 
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The second type of solution is common to all two-equation models and this is the 
one we will focus on now. Examination of the differential equations approaching 
y 0 shows that for all two-equation models, 

and (3* y2 w / v rv constant as y - 0 (4.1 87) 

Table 4.8 lists the values of n and the constant for several models. As 
shown, none of the models predicts the exact theoretical value of 2 for both n 

and f]*y2wjv. This can only be accomplished with additional modification of 
the model equations. 

Table 4.8:  Sublayer Behavior Without Viscous Damping. 

I Model 

Wilcox-Rubesin (1980) 
Saffinan (1970) 
Launder-Spalding (1972) 
Wilcox (2006) 
Wilcox (1988a) 
Kolmogorov (1942) 
Launder-Sharrna (1974) 
Speziale (1990) 
Exact/Measured 

I Type I C I n I ,6* y2wjv I 
k-w;z- 7.1 4.00 12.00 , 

k-w2 6.0 3.7-4.0 12.00 
k-w2 5.7 3.79 12.00 
k-w 5.5 3.31 7.63 
k-w 5.1 3.23 7.20 
k-w 3.1 3.62 7.20 
k-� -2.2 1.39 0.53 
k-'T -2.2 1.39 0.53 

5.0-5.5 2.00 2.00 

The exact values follow from expanding the fluctuating velocity in Taylor 
series near a solid boundary. That is, we know that the fluctuating velocity 
satisfies the no-slip boundary condition and also satisfies conservation of mass 
(see Section 2 .3). Consequently, the three velocity components must behave as 
follows . 

u' 
v' 

w' 

A(x, z ,  t)y 
B(x, z ,  t)y2 
C(x, z ,  t)y 

+ O(y2 ) 
+ O(y3 ) 
+ O(y2 ) 

as y ---+ 0 

Hence, the turbulence kinetic energy and dissipation are given by 

(4.1 88) 

and E rv v (A2 + C2) + O(y) (4.1 89) 

Assuming that E f]*wk, Equation (4. 1 89) tells us that 

and as y - 0 (4. 1 90) 

Thus, using the asymptotic behavior of w for y 0 appropriate to each 
model as the fifth boundary condition, we can solve the sublayer equations (see 



1 78 CHAPTER 4. ONE-EQUATION AND TWO-EQUATION MODELS 

20 

15 

10 

5 

50 100 200 500 

Figure 4.2 1 :  Computed and measured suhlayer velocity: o Laufer; • Andersen 
et a/. ; o Wieghardt; k-w model. 

Subsection 7 .2. 1 for an explanation of how to handle the singular behavior of w 

numerically). One of the most interesting features of the solution is the constant 
in the law of the wall, C, that is evaluated from the following limit. 

• 
1 u+ - -fny+ 
K 

(4. 1 9 1 )  

In practice, integrating from y+ -· 0 to y+ 500 is sufficient for numerical 
solution of the sublayer equations. Program SUBLAY (see Appendix C) can be 
used to solve the sublayer equations for the k-w model. 

Table 4.8 also lists the computed value of C for the various two-equation 
models. As shown, the Spalding ( 1 972) k-w2 model, the Wilcox ( 1 988a) k-w 
model and the k-w model defined in Equations (4.36) - (4.42) are sufficiently 
close to the standard value of 5 .0 to be used with no additional viscous modifi
cations. The Standard k-E model and the Speziale et al. k-r model are farthest 
from the generally accepted value for C. 

Figure 4.2 1 compares k-w model velocity profiles with corresponding mea
surements of Laufer ( 1 952), Andersen, Kays and Moffat ( 1 972), and Wieghardt 
[as tabulated by Coles and Hirst ( 1 969)].  As shown, computed velocities gener
ally fall within experimental data scatter for all values of y+ considered. 

Figure 4.22 compares computed production and dissipation with Laufer's 
( 1 952) near-wall pipe-flow measurements. Again, predictions are close to mea
surements. However, note that Laufer' s  dissipation data are incorrect for values 
of y+ less than 1 0, a point we will discuss further in Subsection 4.8 . 1 .  



4.6. PERTURBATION ANALYSIS OF THE BOUNDARY LAYER 

+ au+ + 
-r ay+ , € 

0.3 -- -- -- -- -- -- ------ --

0.2 
--.... 

�- Production 

0 . 1  0 

0.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ' . . .  ' . . . . . . . 

-0.1 

-0.2 0 
.........._�- Dissipation 

-0.3 ---------- ---- ---- --
0 10 20 30 40 50 60 70 80 90 100 

y+ 

1 79 

Figure 4.22 : Computed and measured production and dissipation: o La�fer; 
-- k-w model. · ·  

The value of the constant C in the law of the wall is remarkably insensitive 
to the value of (}'* . With all other closure coefficients as specified in Equa
tions ( 4.39) - ( 4.42), computations show that as a-* increases from 0.5 to 1 .0, 
the value of C decreases by 0.5%. There is no sensitivity to the cross-diffusion 
coefficient because dk I dy dw I dy < 0, which means (}' d -· 0 in the sub layer. 

The value chosen for a- does affect the value of C. Figure 4.23 shows the 
functional dependence. Computations have been done with the value of the 
Karman constant, K, held invariant by setting a f3ol {3* - (J'K2 I * . This 
justifies selecting (}' 112 for the k-w model. 

c 6.0 

5 . . 5 

5 .0 

4.5 

4.0 
0.50 0.55 0.60 0.65 0 . 70 

Figure 4.23 : Variation of C with closure coefficient a-. 
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This concludes our perturbation analysis of the turbulent boundary layer. As 
we have seen, using perturbation analysis, we have been able to dissect model
predicted structure of the defect layer, log layer and sublayer, never having to 
solve more than an ordinary differential equation. This is a great advantage 
in testing a turbulence model in light of the ease and accuracy with which 
ordinary differential equations can be solved. The equations are not trivial to 
solve however since we are dealing with two-point boundary-value problems, 
and the resulting systems of equations are of sixth order for the defect layer 
and fifth order for the sublayer. However, this is far easier to handle than the 
partial differential equations we started with, and parametric studies (e.g., varying 
the equilibrium parameter, fJT) are much simpler. As a final comment, results 
obtained in this section should make the following statement obvious. 

Given the demonstrated power and utility of perturbation analysis 
in analyzing the turbulent boundary layer, this type of analysis can, 
and should, be used in developing all turbulence models. Failure 
to use these methods is the primary reason so many turbulence 
models have been devised that fail to accurately predict properties 
of incompressible, equilibrium boundary layers. 

4. 7 Surface Boundary Conditions 

In order to apply a two-equation turbulence model to wall-bounded flows, we 
must specify boundary conditions appropriate to a solid boundary for the velocity 
and the two turbulence parameters. As shown in the preceding section, many 
two-equation models fail to predict a satisfactory value of the constant C in the 
law of the wall (see Table 4.8). Consequently, for these models, applying the 
no-slip boundary condition and integrating through the viscous sublayer yields 
unsatisfactory results. 

One approach we can take to remove this deficiency is to introduce viscous 
damping factors analogous to the Van Driest correction for the mixing-length 
model. Since introduction of damping factors accomplishes much more than 
improving predictions of the velocity profile in the sublayer, we defer detailed 
discussion of such modifications to Section 4.9. The k-w model is, in fact, 
unique because viscous modifications to its closure coefficients are not needed 
to achieve a satisfactory value of C. 

An alternative approach is to circumvent the inability to predict a satisfactory 
log-layer solution by simply matching to the law of the wall using a suitable value 
for C. This is what we did in analyzing the defect layer, and the procedure is 
equally valid for general wall-bounded flows. 
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4.7.1 Wall Functions 

1 8 1  

' 

Historically, researchers implementing this matching procedure have referred to 
the functional forms used in the limit y 0 as wall functions. This procedure 
uses the law of the wall as the constitutive relation between velocity and surface 
shear stress. That is, in terms of the velocity at the mesh point closest to the 
surface (the "matching point"), we can regard the law of the wall, viz., 

1 UrY U -- U7 -.en + C K, v (4. 1 92) 

as a transcendental equation for the friction velocity and, hence, the shear stress. 
Once the friction velocity is known, we use Equations ( 4. 1 27) for the k-w model 
or Equations ( 4. 1 32) for the k-E model to define the values of k and w or E at 
the grid points closest to the surface. Because w and E are odd functions of u7 
and both quantities are positive definite, care must be taken for separated flows. 
We ean either use the absolute value of Ur or combine the equations for k and 
w or k and E so that the wall functions for k, w and E become: 

k= (4. 1 93) 

The wall-function approach is not entirely satisfactory for several reasons. 
Most importantly, numerical solutions generally are sensitive to the point above 
the surface where the wall functions are used, i.e., the point where the matching 
occurs (see Subsection 7.2. 1 for an in-depth discussion of this problem). Fur
thermore, the law of the wall doesn't always hold for flow near solid boundaries, 
most notably for separated flows. 

There is a more subtle danger attending the use of wall functions. Specifically, 
when poor results are obtained with a two-equation model, researchers sometimes 
mistakenly blame their difficulties on the use of non-optimum wall functions. 
This assessment is too often made when the wall functions are not the real 
cause of the problem. For example, the k-E model just doesn't perform well for 
boundary layers with adverse pressure gradient, even when accurately matched 
to the log law. Many articles have appeared claiming that discrepancies between 
the k-E model's predicted skin friction and corresponding measurements for such 
flows are caused by the wall functions. This incorrectly assumes that the surface 
shear i s  a localized force that depends only upon sublayer structure. As shown 
in the defect-layer solution of the preceding section, no viscous modification 
is likely to remove the curious inflection [Figure 4. 1 8(b )] in the k-E model 's 
velocity profile unless viscous effects (unrealistically) penetrate far above the 
viscous sublayer. We must not lose sight of the fact that the momentum flux 
through a boundary layer affects the surface shear stress and vice versa [see 
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Equation (4. 1 53)] . Hence, inaccurate skin friction predictions can be caused by 
inaccuracies in the velocity profile anywhere in the layer. 

Wilcox ( 1 989) demonstrates that pressure gradient must be included in or
der to achieve solutions independent of the matching point. Retaining pressure 
gradient in the log-layer equations [i .e., retaining the term f3r / Re8• in Equa
tion (4. 1 1 9)], then the asymptotic behavior for the k-w model [as defined in 
Equations (4.36) - (4.42)] approaching the surface is given by the following 
equations: 

l/ 

1 - 0.30 UrY p+ + O(P+)2 
l/ 

where p+ is the dimensionless pressure-gradient parameter defined by 

p+ v dP 
pu� dx 

(4. 1 94) 

(4.195) 

The expansions in Equation (4. 1 94) have been derived assuming that p+ is a 
small parameter. 

Two recent efforts aimed at developing wall functions have built upon the 
early work of Spalding ( 1 96 1 ) . Shih et al. (1 999) have developed wall functions 
that explicitly account for effects of pressure gradient. Nichols and Nelson (2004) 
have developed wall functions that include effects of both pressure gradient and 
surface heat transfer. The Nichols-Nelson wall functions are particularly effective 
and provide more-or-less grid independent solutions using the Spalart-Allmaras 
one-equation model and the k-w model for both attached and separated flows. 

4.7.2 Surface ess 

As noted in the preceding section, a key advantage of the k-w2 and k-w for
mulations over the k-E formulation is the fact that w-oriented equations possess 
solutions in which the value of w may be arbitrarily specified at the surface. 
This is an advantage because it provides a natural way to incorporate effects 
of surface roughness through surface boundary conditions. This feature of the 
equations was originally recognized by Saffman ( 1970). If we write the surface 
boundary condition on w as 

at y 0 (4. 1 96) 
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Figure 4.24: Variation of the constant in the law of the wall, C, with the surface 
value of the specific dissipation rate. 

we can generate sub layer solutions for arbitrary S R• including the limiting cases 
SR 0 and SR oo . Figure 4.24 shows the computed value of C for a wide 
range of values of SR. As shown, in the limit S R oo , C tends to 5 .4 7 .  In the 
limit S R 0, an excellent correlation of the numerical predictions is given by 

C-
1 

8 .0 + -Jln(SR/100) 
K 

as (4. 1 97) 

Correlation of measurements [see Gersten-Schlichting ( 1 999)] indicate that 
for flow over very rough surfaces (see Figure 1 .8), 

C---> ( 4 . 1 98) 
K 

where ks is the average height of sand-grain roughness elements. (Thus, if we 
make the correlation 

( 4 . 199) 

then Equations (4. 1 97) and (4. 1 98) are identical. Figure 4.25 compares computed 
velocity profiles with the correlation of rough-wall data, which is obtained by 
using Equation ( 4. 1 98) in the law of the wall, viz., 

u+ 1 
-Jln (y/ks) + 8.0, 
K 

0.41 (4.200) 

for three values of kt. Computed velocities are very close to the correlation. The 
most remarkable fact about this correlation is that Equation (4.200) is the form 
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Figure 4.25 : Comparison of computed sub layer velocity profiles for "completely 
rough" surfaces with correlation of measurements: o computed, k"t = 340; 
o computed, k"t = 190; • computed, k"t = 42.5. 

the law of the wall assumes for flow over "completely-rough" surfaces [recall 
Equation (1.31)] , including the value of the additive constant. 

By making a qualitative argument based on flow over a wavy wall, Wilcox 
and Chambers (1975) [see problems section] show that for small roughness 
heights, we should expect to have 

as 0 ( 4.201) 

Comparison with Nikuradse's data (see Figure 1.8) permits us to infer the value 
of S R corresponding to a given value of k"t. Figure 4.26 shows the results for the 
k-w model. The following correlation between 8 R and k"t reproduces measured 
effects of sand-grain roughness for values of k"t up to about 400. 

200 2 

kt ' 

SR 
100 200 2 

kt + kt 
100 e5-k-:--
kt 

' 

k+ < 5 s -

k+ > 5 s 

(4.202) 

As a final comment, the solution for kt 0 is identical to the sublayer 
solution discussed in Subsection 4.6.3 [see Equation (4.187)] . The analysis 
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Figure 4.26: Correlation of S R with dimensionless sand-grain roughness height, 
kd; o Inferred from Nikuradse data; Equation (4.202). 

of this section shows that the singular case corresponds to the perfectly-smooth 
surface. In practice, Equation ( 4.202) should be used rather than Equation ( 4. 1 87) 
even if a perfectly-smooth surface is desired. Specifically, we can combine 
Equations ( 4. 1 96) and the first of Equations ( 4.202) to arrive at the slightly
rough-surface boundary condition on w, viz., 

40000vw w = ----:--
k2 8 

at y=O (4.203) 

It is important to select a small enough value of ks to insure that k; < 5, corre
sponding to a "hydraulically-smooth surface" as defined by Gersten-Schlichting 
( 1 999). If too large a value is selected, the skin friction values will be larger 
than smooth-wall values. The advantage in using either Equation ( 4.202) or 
Equation (4.203) is obvious for several reasons. 

• Local geometry (e.g., distance normal to the surface) does not appear so it 
can be applied even in three-dimensional geometries. 

• k8 need only be small enough to have a hydraulically smooth surface, i.e., 
u7k8/v < 5. Resulting surface values of w are rarely ever large enough 
to cause numerical error provided a sensible finite-difference grid is used 
(see Subsection 7 .2. 1 ). 

• Experience shows that Equation (4.202) works well for separated flows. 
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4.7.3 s Mass Inj 

For boundary layers with surface mass injection, the introduction of an ad
ditional velocity scale ( Vw = area-averaged normal flow velocity through the 
porous surface) suggests that the scaling for w at the surface may differ from 
Equation (4 . 1 96). Andersen, Kays and Moffat ( 1 972) provide further evidence 
that the specific-dissipation-rate boundary condition must be revised when mass 
injection is present by showing, from correlation of their experimental data, that 
both K and C are functions of v;t vw /u-r. Because rough-surface computa
tions show that the value of C is strongly affected by the surface value of the 
specific dissipation rate, this suggests that the surface value of w will depend in 
some manner upon Vw. Following Wilcox and Traci ( 1976), examination of the 
limiting form of the model equations for y+ oo (i.e., in the log layer) shows 
immediately that the effective Karman "constant", Kv, varies with v;t according 
to 

where 3 is given by 

3a- 2 Co--2--
0"K 

1 + Bv;t 

1 
+ fny+ = 3.36 + 0.63fny+ 4K 

( 4.204) 

(4.205) 

Note that Co 5.4 7 is the k-w model-predicted constant in the law of the wall 
for a perfectly-smooth wall with no surface mass transfer. 11 

The variation of Kv predicted in Equations (4.204) and (4.205) is consis
tent with the Andersen et al. data. Including appropriate convective terms in 
Equations (4. 1 84), we can use Program SUBLAY (see Appendix C) to perform 
sublayer computations for the cases experimentally documented by Andersen et 
al. In each case, the surface value of w is given by 

w 
2 UT SB 

l/ 
at (4.206) 

Following Wilcox ( 1 988a), we vary the value of S8 to achieve optimum agree
ment between measured and computed velocities. The correlation between S 8 
and v;t is given in analytical form as 

v;t (1 + 5v;t) 
25 

(4.207) 

Figure 4.27 compares measured velocities with values computed using Equa
tions ( 4.206) and ( 4.207). 

11 For boundary layers with suction, i.e., for Vw < 0, the k-w model provides close agreement 
with measured velocity profiles treating the wall as being smooth. That is, w should be given either 
by Equation (4. 1 87) or by Equation (4.203) with kt < 5. . 
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Figure 4.27: Sublayer velocity profiles for boundary layers with surface mass 
injection; Wilcox (2006) k-w model; o t> o t::,. • Andersen et a/. 

4.8 Application to Wall-Bounded Flows 

Using the surface boundary conditions devised in Section 4.7, we can now apply 
two-equation turbulence models to wall-bounded flows. Because of their relative 
simplicity, we consider pipe and channel flow first using the k-w model. Then, 
we will consider several incompressible boundary-layer applications. We exercise 
the k-w model and the Standard k-E model in the boundary-layer applications. 

4.8.1 Channel and Pipe Flow 

Figures 4.28 and 4.29 compare computed (using Program PIPE - see Ap
pendix C) and measured channel and pipe flow properties, respectively. Six 
different comparisons are shown in each figure, including mean velocity, skin 
friction, Reynolds shear stress, turbulence kinetic energy, turbulence-energy pro
duction and dissipation rate. 

Figure 4.28 compares k-w model channel-flow predictions with the Direct 
Numerical Simulation (DNS) data of Mansour, Kim and Moin ( 1 988). Reynolds 
number based on channel height and average velocity is 13750. Velocity profiles 
and Reynolds shear stress profiles differ by less than 3%. Computed skin friction 
differs from Halleen and Johnston's ( 1 967) correlation [Equation (3 . 1 39)] by 
less than about 2% except at the lowest Reynolds number shown. Although 
the model fails to predict the peak value of k near the channel wall, computed 
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values of k differ from DNS values by less than 5% over 80% of the channel. 
Despite the fact that the model is not asymptotically consistent approaching 
the surface (Subsection 4.9. 1 ), even dimensionless turbulence-energy production, 
p+ VTxy(8Uj8y)ju�, and dissipation, E+ vEju�, nearly duplicate DNS 
results except very close to the surface (see discussion of pipe flow below). On 
balance, k-w results are a bit closer to DNS results than either the Cebeci-Smith 
or Baldwin-Lomax models (Subsection 3 .5 . 1 ). 
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Figure 4.28: Comparison of computed and measured channel-flow properties, 
ReH = 13750. Wilcox (2006) k-w model; o Mansour et al. (DNS); 
o Halleen-Johnston correlation. 

Figure 4.29 compares k-w model pipe-flow results with Laufer's ( 1 952) mea
surements at a Reynolds number based on pipe diameter and average velocity of 
40000. As shown, computed and measured velocity and Reynolds shear stress 
profiles differ by less than 6%. As with channel flow, computed and measured 
turbulence kinetic energy differ by about 4% except close to the surface where the 
sharp peak occurs. Computed production and dissipation differ from measured 
values by less than 5%. However, dissipation is really nonzero at the surface (see 
the DNS results in Figure 4.28), wherefore Laufer's dissipation measurements 
are certainly incorrect as y+ 0. Hence, the model is matching erroneous data! 



4.8. APPLICATION TO WALL-BOUNDED FLOWS 1 89 

0.8 

0.6 

0.4 

0 .2 

y/(D/2) 

1.0 

0.8 

0.6 

0 

U/Um 

U/ur 

20 

15 

10 

5 

yj(D/2) 

1.0 

0.8 

0.6 

0.4 0.4 

0.2 0 0.2 
0 

0.0 0.0 
0.0 0.2 0.4 0.6 0.8 1.0 0 

-u'v' ju;_ 

0 

1 

10 
Ury/v 

0 

10 

5 

2 

0.3 

0.2 

0 .1  r- Production 

0 0  .................................. . • 

-0. 1  '- Dissipation 

-0.2 
- -0.3 

2 3 4 5 0 20 40 60 80 100 
Uryfv kju;_ 

Figure 4.29: Comparison of computed and measured pipe-flow properties, 
ReD = 40000. Wilcox (2006) k-w model; o Laufer; o Prandtl correlation. 

Computed skin friction is within 4% of Prandtl 's universal law of friction [Equa
tion (3. 140)] . Overall, velocity and Reynolds-stress predictions are as close to 
measurements as those of the Cebeci-Smith and Baldwin-Lomax models. 

It is interesting, and perhaps illuminating, that the most important flow prop
erties are accurately predicted even though the sharp peak in turbulence energy is 
underestimated by 40% and 25%, respectively, for channel and pipe flow. That 
is, for engineering applications, the most important quantity is the skin friction. 
The next most important quantity typically is the velocity profile. Only for spe
cialized applications is a subtle feature such as the peak value of k important. 
Thus, we see that even though the k-w model fails to predict this subtle feature, 
this is apparently of little consequence for most engineering applications. 

4.8.2 Boundary Layers 

We turn now to application of the k-w and k-E model equations to the same 1 6  in
compressible boundary layers considered for algebraic (Figure 3 . 1 7), 1/2-equation 
(Figure 3 . 1 9) and one-equation models (Figure 4.4). All of the k-w model results 
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use the surface boundary conditions described in Subsection 4. 7 .2. The k-E model 
computations were done using the Launder-Sharma ( 1974) low-Reynolds-number 
version subject to appropriate surface boundary conditions [see Subsection 4.9. 1 ,  
Equations (4.2 1 1 ) - (4.21 5), (4.2 1 7) and (4.22 1)] . All computations have been 
done with Program E DDYBL (see Appendix C). 

Favorable Pressure Gradient. The top row of graphs in Figure 4.30 compares 
computed and measured c1 for the constant-pressure boundary layer (Flow 1400) 
and three boundary layers with favorable pressure gradient (Flows 1 300, 2700 
and 6300). For the k-w model, computed c1 virtually duplicates measurements 
for all four cases differences between computed and measured c f are no more 
than 4%. The k-E predictions are also quite close to measurements for Flows 
1 400 and 6300. However, k-E skin friction is 1 0% below measured values for 
Flows 1 300 and 2700. Thus, as no great surprise, the k-w and k-E models are 
quite accurate for the flat-plate boundary layer and boundary layers with favorable 
pressure gradient. The average difference between computed and measured c f 
at the final station is 3% and 7% for the k-w and k-E models, respectively. 

Mild Adverse Pressure Gradient. The second row of graphs in Figure 4.30 
compares computed and measured c 1 for boundary layers with "mild" adverse 
pressure gradient. These flows ( 1 1 00, 2 1 00, 2500 and 4800) correspond to 
values of the equilibrium parameter, f3r, less than about 2. The k-w predictions 
are again very close to measurements, even for Flow 4800, which is approaching 
separation. By contrast, the k-E model's skin friction is close to corresponding 
measured values only for Flow 2 100. The model's predicted skin friction is 
almost three times the measured value for Flow 4800, and the average difference 
between computed and measured c f for the four cases is 28%. 

Moderate Adverse Pressure Gradient. Turning to "moderate" adverse · \7 p 
(f3r between about 2 and 4), we focus on the next to bottom row of graphs in 
Figure 4.30, i.e., Flows 2400, 2600, 3300 and 4500. As shown, there is no 
significant increase in differences between computed and measured CJ for the 
k-w model even for the nearly-separated Flow 4500, with the average difference 
being 9%. However, the k-E model's predictions show even greater deviations 
from measured Cf, with the computed value being nearly 4 times the measured 
value for Flow 4500. The average difference at the end of each computation 
is 40%. Flow 3300, Bradshaw (1 969) Flow C, was one of the most difficult 
cases considered in Stanford Olympics I. Throughout the flow, the k-w model' s  
c1 is within 5% of measurements, while the k-E model predicts a final value of 
c 1 that exceeds the measured value by 29%. The difference can be reduced to 
about 20% using wall functions [Chambers and Wilcox (1 977)] . Because the 
equilibrium parameter ,Br � 2 for this flow, the poor results for the k-E model 

• • 
are unsurpnsmg. 
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Figure 4.30: Computed and measured skin friction for boundary layers subjected 
to a pressure gradient. Top row -favorable V' p; next to top row - mild adverse 
\7 p; next to bottom row - moderate adverse \7 p; bottom row - strong adverse 
V'p. Wilcox (2006) k-w model; - - - Launder-Sharma (1974) k-E model; 
o measured. 
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Strong Adverse Pressure Gradient. The bottom-row graphs in Figure 4.30 
correspond to "strong" adverse pressure gradient, which corresponds to f3r > 4. 
Inspection of Figure 4 . 1 9  suggests that the k-w model should be expected to 
continue predicting boundary-layer properties close to measurements, while dif
ferences between k-E predictions and measurements should continue to increase. 
This is indeed the case. For example, Flow 0 1 4 1  has increasingly adverse pres
sure gradient, the experimental data being those of Samuel and Joubert [see Kline 
et al. ( 198 1 )] .  For the k-w model, computed and measured skin friction differ by 
less than 5% of scale. Since f3r exceeds 9 toward the end of the computation, the 
poor performance of the k-c model (computed c 1 exceeds measured values by 
as much as 47%) is consistent with the defect-layer analysis of Subsection 4.6.2. 
While the k-w model's skin friction is 28% higher than measured for the Strat
ford ( 1 959) "incipient-separation" flow, this prediction is closer to the measured 
c1 than any of the algebraic, 1/2-equation and one-equation models considered 
in Chapters 3 and 4. The k-E model's Cf is 4 times the measured value. 

Table 4.9 summarizes differences betw·een computed and measured Cf at the 
final station for the various pressure gradients. The overall average difference 
for all 16 cases is 6% for the k-w model and 37% for the Standard k-E model. 

Table 4.9: Differences Between Computed and Measured Skin Friction. 

Pressure 

Mild Adverse 1 100, 2100, 2500, 4800 5% 28% 
Moderate Adverse 2400, 2600, 3300, 4500 9% 40% 
Strong Adverse 0141, 1200,4400,5300 8% 72% - ..,..---

4.9 Low-Reynolds-Number Effects 

Thus far, the turbulence models we have considered are restricted to high
Reynolds number applications. Even in the case of the k-w model, while we 
have been able to obtain acceptably accurate results by integrating through the 
viscous sub layer, we have paid no attention to low-Reynolds-number effects. For 
example, the model fails to predict the sharp peak in turbulence kinetic energy 
close to the surface for pipe and channel flow (see Figures 4.28 and 4.29). Most 
two-equation models fail to predict a realistic value of the additive constant, C, 
in the law of the wall, and require viscous damping in order to do so. Finally, 
there are applications for which viscous effects must be accurately represented. 
This section will discuss conunonly used low-Reynolds-number corrections. 
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4.9.1 Asymptotic Consistency 

In fonnulating viscous corrections for two-equation models, we can obtain some 
guidance from looking at the limiting behavior of the fluctuating velocities ap
proaching a solid boundary. That is, we assume standard Taylor-series expansions 
for each of the fluctuating velocities and substitute into the exact equations of 
motion, viz., the instantaneous continuity and Navier-Stokes equations. We did 
this in Subsection 4.6.3 when we were formulating surface boundary conditions 
for the viscous-sub layer perturbation solution. Thus, we again begin by assuming 

u' 

v' 

w' 

fx(x,z,t)y 
( . 2 jy x,z,t)y 

fz(x, z, t)y 

+ O(y2 ) 
+ O(y3 ) 
+ O(y2 ) 

as y- 0 (4.208) 

where fx(x, z, t), jy(x, z, t) and fz(x, z, t) must have zero time average and 
satisfy the equations of motion. Note that the no-slip surface boundary con
dition dictates the fact that u' must go to zero as y 0. Since we expect 
Navier-Stokes solutions to be analytic everywhere, we conclude that the fluc
tuating velocity components u' and w' vary linearly with y . Also, substituting 
Equations ( 4.208) into the continuity equation shows that v' varies quadratically 
withy. While we don't know the precise values of fx, jy and fz without solving 
the complete Navier-Stokes equation, we can still use the exact asymptotic vari
ations of u', v' and w' with y to deduce the limiting behavior of time-averaged 
properties approaching the surface. For example, the turbulence kinetic energy 
and dissipation are 

and (4.209) 

Also, the Reynolds shear stress is given by 

Txy"' -fxfy Y3 + O (y4) (4.2 1 0) 

A model that duplicates the power-law forms of k, £ and Txy given in Equa
tions (4.209) and (4.2 1 0) is said to be asymptotically consistent with the near
wall behavior of the exact equations of motion. 

Many researchers have attempted to devise viscous corrections for k-£ and 
other two-equation models to permit their integration through the viscous sub
layer. All have achieved some degree of asymptotic consistency. Jones and 
Launder ( 1 972) were the first to propose viscous modifications for the k-£ model . 
Other proposals have been made by Launder and Sharma ( 1 974), Hoffmann 
( 1 975), Reynolds ( 1 976), Hassid and Poreh ( 1 978), Lam and Bremhorst ( 198 1 ), 
Dutoya and Michard ( 1 98 1 ), Chien (1 982), Myong and Kasagi (1 990), Speziale, 
Abid and Anderson ( 1 990), Shih and Hsu ( 1991 ), Durbin ( 1991), Zhang, So, 
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Speziale and Lai (1993), Yang and Shih (1993), Fan, Lakshminarayana and Bar
nett (1993), Hwang and Lin (1998) and Rahman and Siikonen (2002). For steady, 
incompressible boundary layers, most of these models can be written compactly 
as follows. 

au 
ay 

au 
ay 

2 €2 {) 
- C102h k + E + ay 

where the dissipation, E, is related to the quantity € by 

(4.211) 

(4.213) 

The quantity Eo is the value of E at y 0, and is defined differently for each 
model. The eddy viscosity is defined as 

(4.214) 

Equations (4.211)- (4.214) contain five empirical damping functions, JI, 
h, !11-, E0 and E. These functions depend upon one or more of the following 
three dimensionless parameters. 

' v 
UrY 

v ( 4.215) 

The models devised by Jones and Launder (1972), Launder and Sharma 
(1974), Lam and Bremhorst (1981), and Chien (1982) exemplify most of the 
features incorporated in k-E model viscous damping functions. The damping 
functions and closure coefficients for these four low-Reynolds-number k-E models 
are as follows. 

Jones-Launder Model 

f = e-2.5/(l+ReT/50) 
J-i 

h 1 
h 1 - 0.3e-Re� 

av!k 
2 

ay 
a2u 2 

ay2 
C102 = 2.00, 

(4.216) 
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Launder-Sharma Model 

!11- e-3.4/(l+ReT/50)2 

h 1 
h 1 - 0.3e-R4 

av'k 
2 

2v Eo 8y 
a2u 2 

E 2vvT 8y2 
eEl 1 .44, ef'_2 1.92, ell- 0.09, 

Lam-Bremhorst Model 

fll- (1 - e-0.0165Ry)
2 (1 + 20.5/ReT) 

h 1 + (0.05/ JJJ-)3 
h = 1 - e-Re� 
E0 0 
E 0 

O'k 1 .0, (J'f'. 1 .3 

ed 1 .44, e€2 1 . 92, ell- o.o9, O'k 1 .0, (]'€ 1 .3 

Chien Model 

!11- 1 _ e-0.0115y+ 

h 1 
h 1 - 0 .22e-(ReT/6)z 

k 
Eo 2v 2 y -
E 2 

E -y+ /2 - v e 
y2 

eEl 1 .35, ef'.2 1 .80, ell- 0.09, O'k 1 .0, (J'f'. 1 .3 
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(4.2 1 7) 

(4.2 1 8) 

(4.2 1 9) 

By examining the limiting behavior of each of these models close to a solid 
boundary where y 0, it is easy to demonstrate that, consistent with Equa-
tion ( 4 .209), all four models guarantee 

and as 0 (4.220) 

Additionally, the Lam-Bremhorst model predicts rxy "' y4 while the other 
three models predict rxy ,....., y3. Thus, all except the Lam-Bremhorst model are 
consistent with Equation (4.2 10) as well. 

Surface boundary conditions for low-Reynolds-number k-E models are not 
entirely straightforward. On the one hand, the no-slip boundary condition tells 
us that k must vanish at a solid boundary. On the other hand, the strongest 
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thing we can say about the surface value of E is the second of Equations ( 4.220). 
That is, we invariably must tie the surface value of E to the second derivative 
of k at the surface. The Jones-Launder, Launder-Sharma and Chien models 
build in the proper asymptotic behavior through introduction of the function Eo. 
Consequently, the boundary conditions appropriate at the surface are 

k € 0 at y 0 (4.221) 

By contrast, Lam and Bremhorst deal directly with E and specify the surface 
boundary condition on E by requiring 
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Figure 4.31: Flat-plate boundary layer properties. CH = Chien; DM = 

Dutoya-Michard; HO = Hoffman; HP = Hassid-Poreh; L B  = Lam-Bremhorst 
with E = v82kj8y2 at y 0; L BJ = Lam-Bremhorst with 8Ej8y 0 at 
y 0; LS = Launder-Sharma; WR = Wilcox-Rubesin. [From Patel, Rodi and 
Scheuerer (1985) Copyright © AIAA 1985 -- Used with permission.} 
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Figure 4.32: Comparison of computed and measured skin friction for low
Reynolds-number flows with pressure gradient. CH = Chien; LB1 = Lam
Bremhorst with 8r:.j8y 0 at y 0; LS = Launder-Sharma; WR = Wilcox
Rubesin. [From Patel, Rodi and Scheuerer (1985) --Copyright © AIAA 1985 
- Used with permission.] 

As an alternative, Lam and Bremhorst propose using 

or:. --0 8y at y 0 (4.223) 

While Equation (4.223) is easier to implement than Equation (4.222), there is no 
a priori reason to expect that the next term in the Taylor-series expansion for r:. 

should vanish. 
In a review article, Patel, Rodi and Scheuerer (1985) compare seven low

Reynolds-number variants of the k-r:. model and the Wilcox-Rubesin (1980) k-w2 
model. Figure 4.31 compares computed and measured velocity and dimension
less turbulence kinetic energy (k+ kju;_) profiles for the flat-plate boundary 
layer. As shown, several models fail to provide accurate velocity profiles for the 
incompressible flat-plate boundary layer. 

Figure 4.32(a) shows that for adverse pressure gradient, the Wilcox-Rubesin 
model (which was not designed with low-Reynolds-number applications in mind) 
most faithfully matches measured [Andersen et al. (1972)] skin friction. Fig
ure 4.32(b) shows that none of the models reproduces the measured skin friction 
for the low-Reynolds-number, favorable pressure gradient flow of Simpson and 
Wallace (1975). This further demonstrates that the only thing low-Reynolds
number modifications do is fix the k-r:. model's problems in predicting the con
stant C in the law of the wall. 

There is a popular misconception that low-Reynolds-number modifications 
to the k-E model can remove its deficiencies for adverse pressure gradient flows. 
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This mistaken notion overlooks the volumes of data on and physical understand
ing of turbulent boundary layers established during the twentieth century, most 
notably by Clauser and Coles. Recall from Subsection 4.6 . 1  that Coles describes 
the turbulent boundary layer as a "wake-like structure constrained by a wall" and 
notes that different scales and physical processes are dominant in the sublayer 
and defect layer. As noted above, since perturbation analysis shows that the 
k-E model predicts defect-layer data rather poorly, we cannot reasonably expect 
viscous corrections (which are negligible in the physical defect layer) to correct 
the problem. 

Figure 4.33 clearly illustrates this point. The figure compares computed and 
measured skin friction for the 1 2  incompressible boundary layers with adverse 
pressure gradient considered earlier (see Figure 4.30). Results are presented 
for the Jones-Launder, Launder-Sharma, Lam-Bremhorst and Chien k-f. models 
and for the Wilcox ( 1 998) k-w model. Discrepancies between computed and 
measured c f increase for all four k-E models as the strength of the pressure 
gradient increases. As discussed in the last section, k-w results are close to 
measured values for all twelve cases, including the nearly separated Flow 5300 
(the Chien model predicts separation for this case). In terms of the final values 
of c1, the average difference between computation and measurement for the 1 2  
cases is 6% for the k-w model, 12 43% for the Jones-Launder model, 46% for 
the Chien model, 47% for the Launder-Sharma model and 58% for the Lam
Bremhorst model. 

These results confhm the defect-layer perturbation solution presented in Sub
section 4.6 .2, which shows that [see Equation (4. 1 79)] : 

--- "' --f.nr] + A - /3TBrJf.nr] + 0 rJ f.nr] 
UT /'\, 

as r] --+ 0 ( 4.224) 

where the coefficient B is given in Table 4.7. Combining Equation (4.224) with 
Equation ( 4. 1 7 1  ), the effective law of the wall predicted by the k-f. model is 

as 00 (4.225) 

Since 'rJ < 1, the term f3TBr]f.nr] is negative, so that we should expect the 
computed velocity profile to lie below the classical law-of-the-wall line on a semi
log plot. Figure 4.34 compares the computed Launder-Sharma model velocity 
profile with experimental data, the standard law of the wall and a defect-layer 
solution for f3T 2. Examination of the numerical solution tells us that the 
implied constant in the law of the wall, C, is 5.5 . As shown, the numerical 
solution indeed lies below the law-of-the-wall line, while the defect-layer profile 
shape is similar to the computed profile. We should not expect exact agreement 

12The average difference increases to 7% for the Wilcox (2006) k-w model. 



•· I' " ' 

4.9. LOW-REYNOLDS-NUMBER EFFECTS 

1o3c� 

.. 
[_F"LOW 1 1 OOJ 

!z ' 
JL. • • • 

0 

0 

0 

0 

0 

0 .- . 

0 

0 

• 

• 

• 

• • • 

• • • 

• 

• 

LS 
• 

L.S 
• 

• 

k� 

X<m> 

• • 
JL 

L.S 

• • 

La 

• • 
CH 

0 L---'--- ---
3 

... 

z 

0 

0 

0 

0 

0 
1 

• 

• 

-
• 

• 

(F" LOW 

• • bOg 

• • ooo 

• • ••• 

• • Ob0 

2 

7 9 
X(.ft) 

01411 

ooo-• -
JL. • 

••• • -
LS • 

-
• •• -• LS • 

••• • CH • 

� kw 

3 .. 
X(m) 

IF"LOW 2100) 

JL. 

L.S 

•• 

• 

0 
,....,.ovova..,••· ... , k "" 

0 '----'-----'-----
0 e te. 2"" 

0 

0 

0 { 
0 

0 
1.5 

z 

0 

0 

0 

0 

XCf't) 

IF"LOW 2600] 

• • 

• • 

• • 

kw __ _.__ _ _,. 

3.5 5.5 7.5 

(F"LOW 12'DOJ 

• • 
JL 

• LS • • 
• 

• LS • • 
• 

• ' CH 
• 

kw 

0 L---�--'---·---' 
CJ, S t . S  2.5 3.5 

X<m) 

z � 

0 

0 

0 � 

,f-0 

0 
2 

z 

0 

0 

J.,_- LOW zsool 

- JL. • 

L.S • • 

• • L.S • 

CH • • 

kw 

.. e 
X(.f't) 

w�ow :a:aool 

• • • ' • JL. 

. . ' • o L.S • 

0 ··� . ....--,..-::---' . . . 0 o o CH 

0 

0 '----'------' 
2 " e 

X( ft.) 

"'T" 
rf":LOW 4400] 

.. 
• 

• 0 
--. .J' c 0...� • • • 

• 
z 

• 0--- � LS 0 
• • ----:-----..-._ 

u3 • 0 
• 

• 
0 • CH 

• 

0 kw 
� 

0 
-1 1 3 5 

.. 

... 

z 

0 

0 

0 

0 

0 
0 

6 

t 
2 

CJ 

0 

0 

0 � 

0 
0 

.. 

2 

0 

• 

IF" LOW 

• 

• 

• 
• 

• 

6 

!F"LOW 

• 

• 

• 
• 

• 

1 99 

.qeooj 

• ., .......... ,JL • 
• 

• • 
• LS 

• 

� -
o L.S • 

• 
• • CH • 

• -
�.:� 

12 

"'1500] 

• 
• JL. 

• 

• 
• LS 

• 

• 
• L.S 

• 

• 
• CH 

• 

k� • • 

e 12 

IF"LOW 5300] 

• 

• • • • • 
• • 

JL 

��·�-i\ 
L-S 

0 

0 

0 

0 
2.7 

• 

• 

• 

• 

• 

, • • • • 

' 

. ' 

3.3 3.S 

LB 

CH 

kw 

4,5 
X ( f t ) 

Figure 4.33 :  Computed and measured skin friction for boundary layers with 
adverse pressure gradient; CH = Chien; JL = Jones-Launder; LB = Lam
Bremhorst; LS = Launder-Sharma; kw = Wilcox (1998) k-w. 
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Figure 4.34: Computed and measured near-wall velocity profiles for Samuel 
and Joubert's adverse pressure gradient flow, x = 3.40 m: Launder-Sharma 
(1974) k-E model with"'· = 0.43 and C = 5.5; o Samuel-Joubert. 

between the computed profile and the defect-layer profile since f3T varies quite 
rapidly with x for the Samuel-Joubert flow. However, the similarity of their 
shapes is striking. The important point to note is the impact of the term in 
Equation (4.225) proportional to the equilibrium parameter, f3T· Its effect is to 
distort the velocity profile throughout the defect layer, including its asymptotic 
form approaching the viscous sublayer from above. 

As a final comment on low-Reynolds-number corrections for the k-E model, 
using the dimensionless parameters Ry andy+ [Equation (4.215)] is ill advised. 
Both depend on distance normal to the surface, which can cause difficulty in 
complex geometries such as a wing-fuselage junction. Also, it is ironic that sev
eral additional closure coefficients and functions are needed for the k-E model to 
behave properly in the near-wall region of a turbulent boundary layer. Dissipation 
is, after all, a phenomenon that occurs in the smallest eddies, which is all we find 
in the near-wall region. This further underscores the fact that there is virtually 
no connection between the exact equation for E and its modeled counterpart. 

4.9.2 Transition 

Turbulence model equations can be integrated through transition from laminar 
to turbulent flow, although most models predict transition at Reynolds numbers 
that are at least an order of magnitude too low. The following discussion focuses 
mostly on the k-w model, whose behavior through transition is easiest to under
stand. The discussion also demonstrates why the k-E model is so much harder 
to implement for transitional flows. To understand why and how the k-w model 
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predicts transition, consider the flat-plate boundary layer. For the k-w model, the 
incompressible, two-dimensional boundary-layer form of the equations for k and 
w is as follows. 

uau + vau a 
ax 8y 8y 

au (v + Vr ) ay 
ak vak U + =Vr ax ay 

au 2 a 
(4.226) 

ak 
(4.227) w, ay 

aw vow w U OX + O:t) = 0:' k Vr ay - w + +-w {)y 8y {)y 
* k ow I/+ aO:' w ay 

(4.228) 

(4.229) 

where !3� 9/100 [Equation (4.229)] is the value of !3* appropriate for fully
turbulent flow. With one other exception, all notation and closure coefficients are 
as defined in Equations (4.36) - (4.42). The only difference is the appearance 
of an additional closure coefficient 0:'* in Equations ( 4.227) - ( 4.229). This 
coefficient is equal to unity for the standard high-Reynolds-number version of 
the k-w model. We can most clearly illustrate how the model equations predict 
transition by rearranging terms in Equations (4.227) and (4.228) as follows. 

ok ak * a U ox + V oy -· Pk/3 wk + {)y 
* * k ak v +a 0:' w ay 

U ow + v aw 
= 

p j3 2 ad ak aw a 
{) {) w w + a a +a X y W y y y 

k aw v + aO:'*-w ay 

(4.230) 

(4.23 1 )  

The net production per unit dissipation terms in the two equations, Pk and 
Pw, are defined by:13 

8Ujay 
w 

2 
-1 ' /3 

aUj8y 2 
- 1  w (4.232) 

There are two important observations worthy of mention at this point. First, 
if the turbulence kinetic energy is zero, Equation (4.23 1) has a well-behaved 
solution. That is, when k 0, the eddy viscosity vanishes and the w equation 
uncouples from the k equation. Consequently, the k-w model has a nontrivial 
laminar-flow solution, with vr 0, for w. Second, the signs of Pk and Pw 
detennine whether k and w are amplified or reduced in magnitude. However, 

13For this discussion, we assume that w = w, which reflects the fact that production is less than 
dissipation until transition has occurred. 
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it is not obvious from Equation ( 4.232) how the signs of these terms vary with 
Reynolds number as we move from the plate leading edge to points downstream. 
We can make the variation obvious by rewriting Equation ( 4.232) in terms of the 
Blasius transformation for a laminar boundary layer. 

Before we introduce the Blasius transfmmation, we must detennine the ap
propriate scaling for w .  To do this, we note that close to the surface of a flat-plate 
boundary layer (laminar or turbulent), the specific dissipation rate behaves ac
cording to14 [see Equation (4. 1 87) and Table 4.8] : 

6v 
w ---+ 

f3oY2 
as y - 0 

In terms of the Blasius similarity variable, ry, defined by 

y 

(4.233) 

(4.234) 

where U = is freestream velocity, the asymptotic behavior of w approaching the 
surface is 

w - as 0 (4.235) 

Since U00/x has dimensions of 1/time, we conclude that the appropriate scaling 
for w in the Blasius boundary layer is given by 

u= 
( ) w = --W X, 'f/ 

X 
( 4.236) 

where W(x, ry) is a dimensionless function to be determined as part of the so
lution. Also, we write the velocity in terms of dimensionless velocity, U(x, ry), 
according to 

U U00 U(x, ry) (4.237) 

Noting that (3 {30 0.0708 for two-dimensional flows, the net production-
per-unit-dissipation terms become 

a u  1 a., 
w 

2 
- 1  ' 

a u;a., 2 
- 1 

w 
(4.238) 

Thus, both Pk and Pw increase linearly with Reynolds number, Rex . From the 
exact laminar solution for U(ry) and W(ry) [the x dependence vanishes for the 
Blasius boundary layer] , the maximum value (with respect to ry) of the ratio of 
au;a'r} to w is 

au;a., 
w max 

1 
( 4.239) 

300 

14Keep in mind that dissipation is E = (J*wk so that w can be finite even when k and E vanish. 
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The precise value of this ratio is a weak function of the freestream value of 
w, ranging between 0.0025 and 0.0040. The maximum occurs about midway 
through the boundary layer (y I� = 0.56), a point above which the exact near-wall 
behavior of w [Equation (4.235)] does not hold. Hence, a complete boundary
layer solution is needed to detennine the maximum ratio of au I 8rt to l-V. 

As long as the eddy viscosity remains small compared to the molecular vis
cosity, we can specify the precise points where Pk and Pw change sign, which 
impact the beginning and end of transition, respectively. Using Equation ( 4.239), 
we conclude that the sign changes occur at the following Reynolds numbers. 

9 . 104 .8* 
* ' 
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I 
I 
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(R ) = 9 . 104 .B

o ex w 
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I 
I 
I 

(4.240) 

Figure 4.35 :  Skin friction variation for a boundary layer undergoing transition 
from laminar to turbulent flow. 

With no viscous modifications, the closure coefficients a, a*, .Bo and .B* are 
13/25, 1 ,  0.0708 and 9/ 100, respectively. Using these fully-turbulent values, 
we find (Rex) k 8100 and (Rex)w 12254. Thus, starting from laminar flow 
at the leading edge of a flat plate (see Figure 4.35), the following sequence of 
events occurs. 

1 .  The computation starts in a laminar region with k = 0 in the boundary 
layer and a small freestream value of k. 

2. Initially, because Pk < 0 and Pw < 0, dissipation of both k and w exceeds 
production. Turbulence kinetic energy is entrained from the freestream and 
spreads through the boundary layer by molecular diffusion. Neither k nor 
w is amplified and the boundary layer remains laminar. 

3 .  At the critical Reynolds number, Rexc - 8100, production overtakes 
dissipation in the k equation. Downstream of Xc, production exceeds 
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dissipation in the k equation and turbulence kinetic energy is amplified. 
At some point in this process, the eddy viscosity grows rapidly and this 
corresponds to the onset of transition. 

4. k continues to be amplified and, beyond Rex 12254 production over-
takes dissipation in the w equation. w is now amplified and continues grow
ing until a near balance between production and dissipation is achieved in 
the k equation. When this near balance is achieved, transition from laminar 
to turbulent flow is complete. 

Consistent with experimental measurements, the entire process is very sensitive 
to the freestream value of k. There is also a sensithdty to the freestream value 
of w, although the sensitivity is more difficult to quantify. These observations 
make the following three points obvious. 

• First, turbulence kinetic energy begins growing at a Reynolds number of 
8 1 00.  By contrast, linear-stability theory tells us that Tollmien-Schlichting 
waves begin forming in the Blasius boundary layer at a Reynolds number 
of 90000. This is known as the minimum critical Reynolds number 
for infinitesimal disturbances. Correspondingly, we find that the model 
predicts transition at much too low a Reynolds number. 

• Second, inspection of Equation (4.240) shows that the ratio of {30 to aa* 
controls the value of (Rex )w ,  and hence the width of the transition region. 

• Third, transition will never occur if Pw reaches zero earlier than Pk. Thus, 
occurrence of transition requires 

aa* < o* {30/ {3* as 0 (4.24 1)  

where the quantity Rer is turbulence Reynolds number defined by 

k 
Rer = -- (4.242) 

WI/ 

This fact must be preserved in any viscous modification to the model. 

Our goal is  to devise viscous modifications that depend only upon Rer . As 
noted in the preceding subsection, this quantity is independent of flow geometry 
and thus preserves the universal nature of the model. We also proceed with two 
key objectives in mind. The most important objective is to match the minimum 
critical Reynolds number. Reference to Equation ( 4.240) shows that, in order 
to have (Rexh 90000, we must require 

{3* /a* ----. 1 as (4.243) 
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On the one hand, our primary objective is to devise viscous modifications that 
make a realistic description of the gross aspects of the transition from laminar 
to turbulent flow possible with the k-w model. On the other hand, there is a 
secondary objective that can be accomplished as well. That is, we would also like 
to achieve asymptotic consistency with the exact behavior of k and dissipation, 
f j3* kw, approaching a solid boundary. Specifically, we would like to have 
kly2 ) constant and Elk 2v IY2 as y 0 .  Close to a solid boundary, the 
dissipation and molecular-diffusion terms balance in both the k and w equations. 
The very-near-wall solution for w is given by Equation (4.233). The solution for 
k is of the fotm 

where n is given by 

k I yn ) constant 

n 
1 
- 1 + 2 

as 

Noting that dissipation is related to k and w by 

y - 0 

we can achieve the desired asymptotic behavior of k provided 

/3* I f3o ---> 113 as 0 

(4.244) 

(4.245) 

(4.246) 

(4.247) 

Requiring this limiting behavior as Rer 0 is sufficient to achieve the desired 
asymptotic behavior as y 0 since the eddy viscosity, and hence, Rer vanishes 
at a solid boundary. 

If we choose to have f3o constant for all values of Rer, Equations (4.24 1 ), 
(4.243) and (4.247) are sufficient to determine the limiting values of a* and /3* 
and an upper bound for a a* as turbulence Reynolds number becomes vanishingly 
small. Specifically, we find 

aa* < f3o 
a* /3013 
/3* f3o/3 

as 0 ( 4.248) 

Wilcox and Rubesin ( 1 980) make the equivalent of aa* and a* in their k-w2 
model approach the same limiting value and obtain excellent agreement with 
measured transition width for incompressible boundary layers. Numerical exper
imentation with the k-w model indicates the optimum choice for incompressible 
boundary layers is aa* 0.80/30, or 

0.057 as (4.249) 
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Following Wilcox ( 1 992a), we postulate functional dependencies upon ReT that 
guarantee the limiting values in Equations ( 4.248) and ( 4.249), as well as the 
original fully-turbulent values for ReT ) oo .  

,80 = 0.0708, 

,B* 

a* a� + ReT/Rk 
1 + ReT/Rk 

= 13  . ao + ReT/ Rw . (a* )- l 
25 1 + ReT/Rw 

9 100,80/27 + (ReT/ Rf3)4 
• 

100 1 + (ReT/ Rf3)4 

(4.250) 

(4.25 1) 

(4.252) 

1 * 3 1 * 1 1 ( )  = 2 '  tY = 5 '  fYdo = B ' ao = 3,Bo , a0 = g 4.253 

0, 
ak ow 

< 0  
ox · ox · -

J J (4.254) fYd 
ok ow · > 0  fYdo , 
ox · ox · J J 

Rf' 8, (4.255) 

The three coefficients Rf3, Rk and Rw control the rate at which the closure 
coefficients approach their fully-turbulent values. We can determine their values 
by using perturbation methods to analyze the viscous sublayer. 15 Implementing 
the procedure discussed in Subsection 4.6.3, we can solve for the constant in the 
law of the wall, C. .For given values of R8 and Rk, there is a unique value of • 
Rw that yields a constant in the law of the wall of 5.4 7, which is the value given 
by the model with no viscous modifications. For example, Figure 4.36 shows 
how Rw varies with Rk when Rf' -- 8. 

For small values of Rf' the peak value of k near the surface is close to the 
value achieved without viscous corrections, viz., u;_ / ,8* . As Rf' increases, 
the maximum value of k near the surface increases. Figure 4.37 shows how 
Rw and k�ax krnax/u; vary with R{3 when Rk 6. Again, the value of 
Rw corresponds to C 5.47. Comparison of computed sublayer structure with 
Direct Numerical Simulation (DNS) results of Mansour, Kim and Moin ( 1 988) 
shows that the optimum choice for these three coefficients is as indicated in 
Equation ( 4.255). 

The only flaw in the model' s  asymptotic consistency occurs in the Reynolds 
shear stress, T xy . While the exact asymptotic behavior is T xy rv y3 , the model 

15 Note that this approach reflects a degree of optimism that the same viscous corrections can be 
expected to capture the physics of the viscous sub layer and transitional flows. 
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predicts Txy ,..._, y4 . This discrepancy could easily be removed with another 
viscous modification. However, as will be shown later in this subsection, this is of 
no significant consequence. It has no obvious bearing on either the model 's ability 
to predict transition or properties of interest in turbulent boundary layers. The 
additional complexity and uncertainty involved in achieving this subtle feature 
of the very-near-wall behavior of Txu does not appear to be justified. v 

Finally, to complete formulation of the low-Reynolds-number k-w model, we 
must specify surface boundary conditions. Again exercising Program SUBLAY 
(see Appendix C), we find that Equation (4.207) for surface mass injection is 
replaced by 

Rw 20 

15 

10 

5 

0 

14 
v;t (1  + 5v;t ) 

0 2 4 6 8 10 12 
Rf3 

k�ax 8 

6 

4 

2 

0 

(4.256) 

• 

0 2 4 6 8 10 12  
Rf3 

Figure 4.37:  Variation of Rw and the peak value of k+ with R13 when Rk 6. 
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Similarly, Equation (4.202) for rough surfaces is  replaced by 

200 2 

kt 
' 

SR 
60 200 
kt + kt 

2 60 
e5-k"t -

kt 
' 

k+ < 5 8 -

k+ > 5 s 

(4.257) 

It is a simple matter to explain why little progress has been made in predicting 
transition with the k-E model. The primary difficulties can be easily demonstrated 
by focusing upon incompressible boundary layers. If we use the standard fonn 
of the k-E model, Equations (4.227) - (4.229) are replaced by 

u
aE 

+ v
aE 

ax ay 

au 2 a 
- E + -::--

ay ay 

au 
ay 

2 2 E 
- c€2 k 

a 
+ ay 

(4.258) 

(4.259) 

(4.260) 

Equations (4.258) - (4.260) underscore a critical difference from the k-w model, 
viz. ,  if k is zero, E must also be zero. We cannot simply drop the eddy viscosity 
in the E equation, because of the presence of k in the denominator of the E 
equation's  dissipation term. The model does possess a laminar-flow solution for 
the ratio of E to k. If we make the formal change of variables 

and assume Vr « v ,  the following laminar-flow equation for w results. 

U
aw + V aw 

= (Cc1 - l )f�-t 
ax ay 

au 
ay 

(4.26 1 )  

Equation (4.262) is nearly identical to the limiting form of Equation (4.228) for 
vr / v 0. The only significant difference is the last term on the right-hand side 
of Equation ( 4.262) . Except close to the surface where k must be exactly zero, 
this term is unlikely to have a significant effect on the solution for small nonzero 
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values of k. However, establishing starting conditions is clearly more difficult 
with the k-E model than with the k-w model because of this ill-behaved term. 

Given the diverse nature of viscous modifications that have been proposed 
for the k-E model, it is impossible to make any universal statements about why a 
specific model fails to predict realistic transition Reynolds numbers. Perhaps the 
strongest statement that can be made is, few researchers have approached the 
problem from the transition point of view. Most have sought only to achieve 
asymptotic consistency as y 0 (Subsection 4.9. 1 )  and attempted transition 
predictions only as an afterthought. We can gain some insight by examining 
the net production per unit dissipation terms for the k and E equations that are 
analogous to Equation (4.238), viz., 

8 U/8ry 2 
- 1  

w ' 
au;a11 

w 

2 
- 1  (4.263) 

On the one hand, without viscous damping, if we assume Equation (4.239) 
is valid, we find (Rex )k 8100 and (Rex)€  10800. Consequently, as with the 
high-Reynolds-number version of the k-w model, transition will occur at too low 
a Reynolds number. On the other hand, because eM, c€2 and sometimes c€1 
are multiplied by functions of distance from the surface and/or functions of ReT 
(c.f. JM, fi and h in Subsection 4.9. 1 )  in low-Reynolds-number k-E models, we 
cannot simply use Equation (4.239). Furthermore, as discussed in the preceding 
subsection, some modelers add terms to the k and E equations in addition to 
damping the closure coefficients. Each set of values for the closure coefficients 
and additional terms must be used in solving Equation (4.262) to determine 
the laminar-flow solution for E/k. While it is clearly impossible to make a 
quantitative evaluation of all variants of the k-E model, we can nevertheless 
make two general observations. 

First, Rumsey et al. (2006) have shown that if C€1 f2C€2 at any point, 
the k-E model has "arbitrary steady-state converged solutions that are highly de
pendent on numerical considerations such as initial conditions and solution pro
cedure." This can occur, for example, with the Jones-Launder ( 1 972), Launder
Sharma (1 974) and Lam-Bremhorst ( 1 98 1 )  models. Nonphysical dependence on 
initial conditions is a serious cause for alarm in transition computations. 

Second, although this discussion is not intended as an exhaustive survey of 
the numerous low-Reynolds-number versions of the k-E model, it does illustrate 
how difficult it can be to apply the model to the transition problem. Given 
enough additional closure coefficients and damping functions, the k-E model can 
probably be modified to permit satisfactory transition predictions. However, even 
if this i s  done, establishing starting conditions will ultimately require a solution 
to Equation ( 4.262). That is, to initialize the computation, we must effectively 
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transform to the k-w model. Since this is the natural starting point, it seems 
illogical to perform subsequent computations in tetms of k and E. 

4.9.3 c and Pipe Flow 

Figure 4.38 compares low-Reynolds-number k-w model channel-flow skin fric
tion, c1, with the Halleen and Johnston ( 1967) correlation [Equation (3. 1 39))] . 
Reynolds number based on channel height, H, and average velocity ranges from 
1 03 to 105 .  Computed c f differs from the correlation by less than 3% except 
at the lowest Reynolds number shown where the correlation probably is inac
curate. Velocity, Reynolds shear stress, and turbulence kinetic energy profiles 
differ by less than 7%. Most notably, the model predicts the peak value of k 
near the channel wall to within 4% of the DNS value. Approaching the surface, 
the dimensionless turbulence-energy production, p+ VT xy ( &U I &y) I u�, and 
dissipation, E+ vEiu�, are within 1 0% of the DNS results except very close 
to the surface. 
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Figure 4 .38 :  Comparison of computed and measured channel-flow properties, 
ReH 13750. Low-Reynolds-number k-w model; o Mansour et a!. (DNS); 
o Halleen-Johnston correlation. 
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Figure 4.39 compares computed pipe flow Cf with Prandtl 's  universal law of 
friction [Equation (3 . 1 40)]. Reynolds number based on pipe diameter, D, and 
average velocity varies from 103 to 1 06. As with channel flow, computed c 1 falls 
within 5% of the correlation except at the lowest Reynolds number shown where 
the correlation is likely to be in error. Computed and measured velocity and 
Reynolds shear stress profiles differ by less than 8%. Computed and measured 
turbulence kinetic energy differ by about 5% including the region close to the 
surface where the sharp peak occurs. Computed turbulence-energy production, 
p+, and dissipation, E+, differ from measured values by less than 10% except 
where Laufer's measurements are inaccurate close to the surface. 
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Figure 4.39: Comparison of computed and measured pipe-flow properties, 
Ren = 40000. Low-Reynolds-number k-w model; o Laufer; o Prandtl 
correlation. 

Aside from the sharp peak in k near the surface and dissipation approaching 
a finite, non-zero value at the surface, these results for channel and pipe flow 
are nearly identical to those obtained with no viscous modifications. Thus, in 
the context of the k-w model, these are benign features of the turbulence that 
have little significance for prediction of skin friction, Reynolds shear stress and 
velocity profiles. 
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4.9.4 Boundary-Layer Applications 

Figure 4.40 compares computed and measured skin friction for the 1 6  baseline 
test cases considered for algebraic and one-equation models. Computations have 
been done using Program E DDYBL (see Appendix C). Additionally, Table 4. 10  
summarizes average differences between computed and measured c f at the end 
of each computation. As indicated in the table, both the low-Reynolds-number 
(Low-Re) and high-Reynolds-number (High-Re) versions of the k-w model re
produce measured skin friction to well within measurement error. 

Table 4 . 10 :  Differences Between Computed and Measured Skin Friction. 

, 
Mild Adverse 1 100, 2 1 00, 2500, 4800 
Moderate Adverse 2400, 2600, 3300, 4500 

Adverse 0 1 4 1 ,  1 200, 4400, 5300 
-

4% 
8% 
7% 
6% 

5% 
9% 
8% 

With just one exception, differences between the Low-Re and High-Re ver
sions of the k-w model are almost imperceptible. This is expected since the 
low-Reynolds-number modifications are confined almost exclusively to the vis
cous sublayer. The skin friction, by contrast, is controlled by the overall balance 
of forces (pressure gradient and surface shear stress) and the momentum flux 
through the entire boundary layer. 

The only noteworthy differences between Low-Re and High-Re model pre
dictions occur for the incipient separation case, Flow 5300. The Low-Re model 
provides a solution with c f 3 . 1 · 10-4 at the final station, compared to 
c1 6 .8 · 10-4 for the high-Reynolds-number version of the model. The mea
sured value of CJ 5.3 · 10-4 lies midway between model predictions with and 
without viscous modifications. 

The disparate results obtained for Flow 5300 are likely due to the fact that, 
approaching separation, the specific dissipation rate is reduced to smaller levels 
than those prevailing in attached boundary layers. Recall that in the sublayer, w 
scales with u';.-fv. Consequently, since the viscous modification to the closure 
coefficient a directly impacts the production of w, the percentage change will 
be much greater when w is small. This will, in tum, have a nontrivial effect 
throughout the boundary layer, and thus have a noticeable impact on the skin 
friction. 

As a final comment, k-w model-predicted skin friction and velocity for Flow 
5300 with or without viscous modifications are much closer to measure-
ments than those of any other turbulence model known to this author. 
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Figure 4.40: Computed and measured skin friction for boundary layers subjected 
to a pressure gradient. Top row -favorable V' p; next to top row - mild adverse 
V' p; next to bottom row - moderate adverse V' p; bottom row - strong adverse 
'Vp. Low-Reynolds-number k-w model; - - - High-Reynolds-number k-w 
model; o measured. 
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Turning now to transition, Figure 4.41 compares computed and measured 
transition Reynolds number, Reot , for an incompressible flat-plate boundary 
layer. We define the transition Reynolds number as the point where the skin 
friction achieves its minimum value. Results are displayed as a function of 
freestream turbulence intensity, T', defined by 

2 ke -
3 U2 e 

(4.264) 

where subscript e denotes the value at the boundary-layer edge. As shown, con
sistent with the data compiled by Dryden ( 1 959), Reot increases as the freestream 
intensity decreases. Because w can be thought of as an averaged frequency of 
the freestream turbulence, it is reasonable to expect the predictions to be sensi
tive to the freestream value of w. To assess the effect, the freestream value of 
the turbulence length scale .e k112 fw has been varied from 0.00 1 8  to 0. 1 008 
where 8 is boundary-layer thickness. As shown, computed Reot values bracket 
most of the data. Unlike the situation for free shear flows, the k-w model 's 
sensitivity to the freestream value of w is a desirable feature for transition appli
cations. Physical transition location is not simply a function of T', but rather is 
frequency dependent. While it is unclear how the freestream value of w should 
be specified, consistent with measurements, the model is not confined to a single 
transition location for a given T' regardless of the frequency of the disturbance. 

Figure 4.42 compares computed width of the transition region with measure
ments of Dhawan and Narasimha ( 1 958), Schubauer and Skramstad ( 1948), and 
Fisher and Dougherty ( 1 982). We define transition width, �Xt, as the distance 
between minimum and maximum skin-friction points. The computed width, 
Rel:!.xt , falls within experimental data scatter for 104 < Rext < 107. �Xt is 
unaffected by the freestream value of w .  

While these results are interesting, keep in mind that transition is a compli
cated phenomenon. It is triggered by a disturbance in a boundary layer only if 
the frequency of the disturbance falls in a specific band. Reynolds averaging 
has masked all spectral effects, and all the model can represent with k and w 
is the intensity of the disturbance and an average frequency. Hence, it is possi
ble for the turbulence model to predict transition when it shouldn't occur. The 
model equations thus are sensible in the transition context only if the triggering 
disturbance is broad band, i.e., contains all frequencies. 

Additionally, we have only guaranteed that the point where k is first amplified 
matches the minimum critical Reynolds number for the incompressible, flat
plate boundary layer. To simulate transition with complicating effects such as 
pressure gradient, surface heat transfer, surface roughness, compressibility, etc., 
the values of a� and O:o must change [see Wilcox ( 1 977)] . Their values can be 
deduced from linear-stability theory results, or perhaps from a correlation based 

' ' 
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Figure 4.42 : Transition width for an incompressible flat-plate boundary layer: 
- Wilcox (2006) k-w model; o Dhawan and Narasimha; D. Schubauer and 
Skramstad; o Fisher and Dougherty. 
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on stability theory. Nevertheless, some infonnation must be provided regarding 
the minimum critical Reynolds number for each new application. 

In general, we can always match the measured transition point by adjusting 
the freestream value of k. This is satisfactory when the transition point occurs 
at a large Reynolds number, which requires k00 to be small relative to U! . 
Figure 4.43, for example, compares computed and measured skin friction for an 
incompressible flat-plate boundary layer [Schubauer and Klebanoff ( 1 955)]. The 
computation was done with T' 0.05%, which was selected by trial and error 
to best match the measured transition point. 
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Figure 4.43 : Computed and measured skin friction for a transitional flat-plate 
boundary layer; Wilcox (2006) k-w model; o Schubauer and Klebano.ff 

However, for a high-speed flow in which transition has been triggered at a 
relatively small Reynolds number, often unreasonably large values of k00 are 
needed to cause transition, so large as to affect the total energy in the freestream 
in a physically unrealistic manner. Thus, a new method for triggering transition 
is needed. 

Wilcox ( 1 994) offers an alternative to depending upon the model to predict 
the onset of transition, known as the numerical roughness strip. The foundation 
of the concept rests upon the fact that by using a finite value for w at the surface, 
the model simulates surface roughness (Subsection 4. 7 .2). Since increasing the 
surface roughness height corresponds to decreasing the surface value of w (and 
thus the dissipation in the k equation), the model predicts that roughness will 
have a destabilizing effect. This is consistent with measurements, and patches 
of surface roughness are often used to trigger transition in experiments. 

Using Equations (4. 1 96) and (4.202) to simulate a roughness strip, Wilcox 
( 1 994) has run more than 20 transitional boundary layer cases to test this idea. In 
all cases, computation begins at the plate leading edge, and the turbulence kinetic 
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energy is initially set to an extremely small value, viz., 10- 15U!, throughout the 
boundary layer. This value is too small to trigger transition naturally. The initial 
w profile is given by the exact laminar-flow solution to the model equations. Us
ing this approach, the numerical roughness strip triggers transition at the desired 
location for all of the cases considered using a roughness strip with k8 and the 
streamwise extent of the strip, �s, given by the following correlations. 

ks -- =-- max 
eSt 

5000 3 
' 

Rext 
(4.265) 

(4.266) 

The quantities bt and Rext are the boundary-layer thickness and transition 
Reynolds number based on arclength. 

Figure 4.44 compares computed and measured [Blair and Werle ( 1981  ),  Blair 
( 1983)] Stanton number, St, for transitional boundary layers with surface heat 
transfer. According to Equations (4.265) and (4.266), the dimensions of the 
roughness strip required to match the measured transition point for the case 
with favorable pressure gradient are (k8/bt ,  �s/bt) = (8.5, 8 .7).  As shown, 
differences between computed and measured Stanton numbers are no more than 
1 5% for the two cases shown. 

' ' ' ' 

0 • 
... 

0 • 
N 

0 BLRI R-�ERL£ - COMPUTED 0 • 
.. 

0 B L A I R  
C O M P UTED 

� -----�--�-�----:� � --_,...,,.....-_...._ __ ....,... _ ___. __ _ 'b. o o .4  o . a  1 .2  1 . 6  2 .0  'b.o o.5 1 . 0  1.5 z .o  2.5 
x (m) x (m) 

(a) Mildly favorable pressure gradient (b) Constant pressure 

Figure 4.44 : Computed and measured Stanton number for transitional boundary 
layers with surface heat transfer. [From Wilcox (1994) Copyright © AIAA 
1994 Used with permission.] 

Perhaps the most practical way to use the model for transitional flows is in 
describing the transitional region, as opposed to predicting transition onset. Of 
course, the question of sensitivity to spectral effects in the transition region must 
be raised. Using linear-stability computations, Wilcox ( 1 98 l a) shows that after 
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the initial disturbance has grown to a factor of e4 times its initial value, the 
turbulence model closure coefficients lose all memory of spectral effects. Thus, 
we can conclude that not far downstream of the minimum critical Reynolds 
number, Reynolds averaging is sensible. This tells us that, if the point at which 
the transition begins is known, using a numerical roughness strip . is a practical 
and accurate way of simulating transitional boundary layers. 

Low-Reynolds-number corrections increase the complexity of two-equation 
models significantly. The high-Re k-w model has just 6 closure coefficients and 
2 closure functions. The low-Re version described in this subsection has 1 1  
closure coefficients and 5 closure functions. The various low-Reynolds-number 
models discussed in Subsection 4.9. 1 involve a similar increase in the number of 
closure coefficients and damping functions. The Launder-Shanna (1 974) model, 
for example, has 9 closure coefficients and 4 closure functions. 

If viscous effects are insignificant for a given application, it is advisable 
to use the simpler high-Reynolds-number version of the model. In the case of 
the k-E model, if you need to integrate through the viscous sublayer, you have 
no choice but to use one of the low-Reynolds-number models, preferably one 
that yields a satisfactory solution for simple flows such as the incompressible 
flat-plate boundary layer. In the case of the k-w model, integration through 
the sublayer can be done without introducing viscous corrections, and there is 
virtually no difference in model-predicted skin friction and velocity profiles with 
and without viscous corrections for turbulent boundary layers. 

4.10 Application to Separated Flows 

Turning to separated flows, we first consider the axisymmetric flow with strong 
adverse pressure gradient experimentally investigated by Driver ( 1 99 1  ). Fig
ure 4.45 compares measurements with computed skin friction and surface pres
sure for the k-w model defined in Equations ( 4.36) - ( 4.42). The computations 
were done using Program E DDY2C (see Appendix C). As shown, the k-w 
model yields a separation bubble of length quite close to the measured value, 
with the separation point slightly upstream of the measured location. Although 
pressure downstream of reattachment is 10% higher than measured, results are 
clearly much closer to measurements than those obtained with the Baldwin
Lomax, Baldwin-Barth and Spalart-Allmaras models (see Figures 3 . 1 8  and 4.5). 

Because the stress-limiter modification to the model [Equation (4.36)] sup
presses the magnitude of the Reynolds shear stress, the viscous stress opposing 
the adverse pressure gradient is reduced. This is attended by an increase in 
separation-bubble size. To asses the impact of the stress limiter, Figure 4.45 
also includes computed results using the Wilcox ( 1 988a) k-w model. This model 
includes neither cross diffusion nor a stress limiter. Separation-bubble length is 
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Figure 4.45 : Computed and measured flow properties for Driver 's separated 
flow; Wilcox (2006) k-w model; - - - Wilcox (1988a) k-w model; o Driver. 

about three-quarters of that predicted by the new k-w model, while the separation 
points are nearly coincident. Aside from the separation-bubble size difference, 
computed results are very similar. Hence, we conclude that: (a) the stress-limiter 
effect is small for this flow and (b) its use with the k-w model yields flow prop
erties that are closer to measurements than the Wilcox ( 1 988a) version. 

Menter ( 1 992c) applied a hybrid k-wl k-E model to this flow using a stress 
limiter. While computed pressure is very close to measured downstream of 
reattachment, the predicted separation bubble is 57% longer than measured (see 
Table 4. 1 1  ). The table also includes results for several other turbulence models to 
provide a comprehensive comparison of several models considered in Chapters 3 
and 4.  Note that, consistent with its muted response to adverse pressure gradient, 
the Standard k-E model fails to predict any flow separation [Menter ( 1 992c)] .  

Table 4. 1 1 :  Separation-Bubble Length for Driver 's Separated Flow. 

I Model I Reference I L�.:x / D I Deviation from Measured I 
One-Equation Baldwin-Barth (1 990) 3.22 + 1 30% 
Algebraic Baldwin-Lomax ( 1978) 2 .89 + 106% 
One-Equation Spalart-Allmaras ( 1 992) 2.24 +60% 
k-w!k-E Menter ( l992c) 2.20 +57% 
Half-Equation Johnson-King ( 1 985) 1 .69 +2 1 %  
k-w Wilcox (2006) 1 . 1 8  - 1 6% 
k-w Wilcox ( l988a) 0.84 -40% 
k-� Launder-Sharma ( 197 4) 0.00 - 1 00% 
Measured Driver ( 1 99 1 )  1 .40 
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Figure 4.46: Computed and measured skin friction for flow past a backward
facing step; ReH 37500; Wilcox (1988a) k-w model; - - - k-E model; 
• Driver-Seegmiller data. [From Menter (1992c).] 

Next, we consider the backward-facing step (see Figure 4.6 for the geometry). 
Figure 4.46 compares computed and measured [Driver and Seegmiller ( 1 985)] 
skin friction for backstep flow with the upper channel wall inclined to the lower 
wall at angles of 0° and 6° . Computed results are shown for the \Vilcox ( 1 988a) 
k-w model and for the Standard k-E model with wall functions; neither model 
includes viscous corrections. As summarized in Table 4. 1 2, the k-E model pre
dicts reattachment well upstream of the measured point for both cases, while the 
k-w model is within 4% of the measured location for both cases. 

Table 4. 12 :  Backstep Reattachment Length. 

I Model I Reference I a = oo 1 a = 6° 1 
k-€ Launder-Shanna (1 974) 5.20 5.50 
One-Equation Spalart-Allrnaras ( 1992) 6. 1 0  8.60 
k-w Wilcox ( 1988a) 6. 1 8  8.45 
k-w/k-E Menter (1 992c) 6.80 
k-w Wilcox (2006) 7.07 
Measured Driver-Seegmiller (1 985) 6.26 8 . 10  
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Figure 4A 7 :  Computed and measured skin friction and suiface pressure for flow 
past a backward-facing step; ReH 37500; Wilcox (2006) k-w model; 
- - - Wilcox (1988a) k-w model; o Driver-Seegmiller. 

Note that, despite the apparent simplicity of the geometry, backstep computa
tions require a relatively large number of grid points. Menter ( 1 992c), for exam
ple, reports a reattachment length of 6.40 step heights for the Wilcox ( 1 988a) k-w 
model that he computed with a 1 20x120 finite-difference grid. Using a 30 1 x 1 63 
grid with Program E DDY2C yields a shorter reattachment length of 6. 1 8  step 
heights, which is the value quoted in Table 4. 12 .  

Focusing on a channel with a horizontal upper wall (o: 0°), Figure 4.47 
compares computed and measured skin friction and surface pressure coefficient, 
Cp, for the Wilcox (2006) k-w model. The figure also includes values predicted 
by the Wilcox ( 1 988a) version to help discern the effect of the stress limiter. 
With the exception of the reattachment point, all computed flow properties are 
nearly identical. As listed in Table 4 . 12, the reattachment length is 1 3% longer 
with the stress limiter. Menter ( 1 992c) found a similar effect in his computations. 

Flow past a backward-facing step is mildly dependent on Reynolds number. 
As sutmnarized by Jovic and Driver (1 995), reattachment length is somewhat 
shorter at low Reynolds numbers. To assess the effect of Reynolds number on k-w 
model backward-facing step predictions, we now consider the case documented 
by Jovic and Driver (1 994). Reynolds number based on step height for the 
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Figure 4.48 : Computed and measured skin friction and surface pressure for 
flow past a backward-facing step; ReH 5000; Wilcox (2006) k-w model; 
- - - Wilcox (1988a) k-w model; o Jovic-Driver. 

Jovic-Driver backward-facing step experiment is ReH 5000. By contrast, the 
Driver-Seegmiller case considered above has ReH 37500. 

Figure 4.48 compares computed and measured skin friction and surface pres
sure coefficient. Both versions of the k-w model predict c f and Cp variations 
that fall within a few percent of measured values over most of the flowfield. 
Predicted reattachment length is 6.64H (a 7% increase over the ReH 37500 
prediction) for the Wilcox ( 1 988a) k-w model and 7.28H (a 3% increase) for the 
Wilcox (2006) version. Since the measured length is 6 .00H (a 4% decrease), 
neither model reflects the measured reduction of recirculation-region length. 

All three of these examples show that the using the stress limiter with the k-w 
model increases the size of the separated region. On the one hand, for Driver's 
separated axisymmetric flow (Figure 4.45), the stress limiter reduces differences 
between computed and measured flow properties. This is unsurprising since the 
separation bubble length is 40% smaller than measured without the limiter. On 
the other hand, the stress limiter increases differences between predicted and 
measured reattachment length for flow past backward-facing steps (Figures 4.47 
and 4.48). This is also understandable because the model yields reattachment 
lengths that are very close to measured in the absence of the stress limiter. 

.i 
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Figure 4.49: Effect of the stress-limiter coefficient, Clim· on computed reattach
ment length for a backward-facing step with Rea 37500. 

To gain some insight into the stress-limiter's  nature, recall that we compute 
the eddy viscosity according to 

k -
- ' w 
w 

max w, Clim ' 
7 

Clim -- -8 
(4.267) 

In implementing the stress-limiter concept for his k-w/ k-£ model, Menter ( 1 992c) 
selects Clim 1 and excludes it from the hybrid wl£ equation. Durbin ( 1 996) 
reconunends Clim 1 .03 for use with a pure k-w model. 

Figure 4.49 indicates how reattachment length, Xr, for the Rea 37500 
backward-facing step varies with Clim · As shown, reattachment length increases 
in a monotone fashion as Czim increases. The asymptotic value for no stress 
limiter, i.e., for Czim 0, is X r  6 .33H, which is 1 %  larger than the measured 
value. 1 6  Selecting Clim 7/8 yields a value of Xr 7.07 H, which is within 
1 3% of the measured length. 

We have only briefly touched on the impact of the stress limiter in this chapter, 
mainly to demonstrate that its effect on incompressible flows is relatively small 
for the k-w model. However, as we will see in Chapter 5, it has a much more 
significant effect for compressible flows. Selecting Clim 7/8 proves to be 
optimum for shock-separated flows. We defer further discussion of the stress 
limiter to the next chapter (see Subsection 5.8.4). 

16The value differs from the Wilcox ( 1 988a) k-w model's value of Xr = 6.18H because of 
closure-coefficient differences and the inclusion of cross diffusion in the Wilcox (2006) model. 
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Han ( 1989) has applied the k-E model with wall functions to flow past a sim
plified three-dimensional bluff body with a ground plane. The object considered 
is known as Ahmed's  body [Ahmed et al. ( 1 984)] and serves as a simplified 
automobile-like geometry. In his computations, Han considers a series of after
body slant angles. Figure 4.50(a) illustrates the shape of Ahmed' s  body with 
a 30° slant angle afterbody. Figure 4.50(b) compares computed and measured 
surface pressure contours on the rear-end surface for a 1 2.5° slant angle. 

As shown, computed pressure contours are similar on the slanted surface, but 
quite different on the vertical base. For slant angles up to 20°, the computed base 
pressures are significantly lower than measured. Consequently, the computed 
drag coefficient is about 30% higher than measured. Considering how poorly 
the k-E model performs for boundary layers in adverse pressure gradient and for 
the two-dimensional backward-facing step, it is not surprising that the model 
would predict such a large difference from the measured drag in this extremely 
complicated three-dimensional, massively-separated flow. 

This is a quintessential example of how important turbulence modeling is 
to Computational Fluid Dynamics. Recall that there are three key elements to 
CFD, viz., the numerical algorithm, the grid and the turbulence model. Han 
uses an efficient numerical procedure and demonstrates grid convergence of his 
solutions. Han's computational tools also include state-of-the-art grid-generation 
procedures. Han's research efforts on this problem are exemplary on both counts. 
However, using the k-E model undermines the entire computation for the follow-

• 
mg reasons. 

• Because the model fails to respond in a physically realistic manner to 
the adverse pressure gradient on the rear-end surface, the predicted skin 
friction is too high. 

• This means the vorticity at the surface is too large, so that too much 
vorticity diffuses from the surface. 

• This vorticity is swept into the main flow and too strong a vortex forms 
when the flow separates. 

• This, of course, reduces the base pressure. 

Thus, the k-E model' s  inability to accurately respond to adverse pressure gradient 
distorts the entire flowfield. 

These results debunk the notion that a turbulence model needn 't do particu
larly well in predicting attached flows as long as it provides satisfactory results 
for a particular advanced application that might involve complicated flow phe
nomena like massive separation. Most likely, such a model has been fine tuned 
for precisely that advanced application and, just as likely, does not apply very 
far beyond the specifics of the application. 
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Figure 4.50: Flow past Ahmed's body - high-Re k-c computations. [From Han 
(1989) Copyright © AIAA 1989 -- Used with permission.] 
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Our final separated-flow application is particularly difficult to simulate, i .e., 
blood flow in an arterial stenosis. The word stenosis, common in bioengineering 
literature, means "narrowing of a passage." Thus, we consider the flow of blood 
through an artery that has a nanowing due to the deposit of plaque caused by 
excess cholesterol in the blood stream. One feature characteristic of blood flow 
is the low Reynolds number, Re, associated with the human body. For example, 
Re ranges from about 400 in the common carotid artery to 1 500 in the ascending 
aorta. In the absence of stenosis, the flow is laminar since fully-developed pipe 
flow does not experience transition to turbulence until the Reynolds number 
based on diameter and average flow speed exceeds about 2300. However, the 
obstruction presented by stenosis leads to flow separation, which in turn causes 
transition to turbulence. Thus, the problem we address is a low-Reynolds-number 
flow that includes transition, separation and, ultimately, reattachment. 

Figure 4.5 1 shows the geometry and streamlines of arterial stenosis compu
tations performed by Ghalichi et al. ( 1 998). The Ghalichi et al. computations 
have been done using the Wilcox ( 1994) low-Reynolds-number version of the 
k-w model, which is very similar to the low-Re k-w model described in Sub
section 4.9.2. The flows indicated in Figures 4.5 1 (a) and (b) correspond to a 
reduction in cross-sectional area of 50% and 75%, respectively. In both cases, a 
separation bubble is present downstream of the stenosis. 

r 

(a) 50% Stenosis 

(b) 75% Stenosis 

Figure 4.5 1 :  Computed streamlines for blood flow through arteries with 50% 
and 7 5% stenosis; Re 1000. 

Figure 4.52(a) compares computed and measured [Saad and Giddens ( 1 983)] 
reattachment length, La, for the two different stenoses the quantity D denotes 
the diameter of the unobstructed artery. The largest difference between theory 
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Figure 4.52: Computed and measured flow properties for blood flow in arterial 
stenoses. 

and experiment is 1 0% of scale (for 75% stenosis and Re 500). One of 
the most remarkable features of the computed flowfields is the critical Reynolds 
number at which transition to turbulence occurs. Consistent with measurements, 
the k-w model predicts transition at about Re 1 100 for a 50% stenosis and at 
Re 400 for a 7 5% stenosis. 

Figure 4.52(b) compares computed and measured static pressure at the surface 
in a 50% stenosis for one of the Ghalichi et al. k-w based computations, and for 
results obtained in an earlier study by Zijlema et al. ( 1 995) using the Standard 
k-E model. While differences between computed and measured pressures for the 
k-w model are no more than 20% downstream of the stenosis, the Standard k-E 
model predicts pressures that bear no resemblance to measured values. 

4.11  Range of Applicability 

Early one-equation models were based on the turbulence kinetic energy equation, 
and were incomplete. As discussed in Section 4.2, only a modest advantage 
is gained in using such models rather than an algebraic model. The primary 
difficulty is the need to specify the length scale for each new application. There 
is no natural way to accommodate an abrupt change from a wall-bounded flow 
to a free shear flow such as near an airfoil trailing edge or beyond the trunk lid 
of an automobile. The only real advantage of using this type of one-equation 
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model rather than a two-equation model is that numerical solution is simpler. 
One-equation models tend to be nearly as well behaved as algebraic models, 
while two-equation models, especially low-Re k-E models, can be quirky. 

By contrast, more recent one-equation models based on a postulated equation 
for eddy viscosity are complete. Two of the most commonly used models are 
those of Baldwin and Barth ( 1 990) and of Spalart and Allmaras ( 1 992). 

The Baldwin-Barth model is very inaccurate for attached boundary layers, 
consistently predicting values of skin friction that are typically 25% below cor
responding measurements. The model's predictions are even farther from mea
surements for separated flows, and its equation often presents serious numerical 
difficulties. Thus, it is clear that the Baldwin-Barth model is of little value for 
general turbulent-flow applications. 

The Spalart-Allmaras model predicts skin friction for attached boundary lay
ers that is as close to measurements as algebraic models. The model ' s  predictions 
are far superior to those of algebraic models for separated flows, and the differ
ential equation presents no serious numerical difficulties. Its only shortcoming 
for incompressible flows appears to be in predicting the asymptotic spreading 
rates for plane, round and radial jets. Also, as we will see in Chapter 5 ,  the 
model is  quite inaccurate for flows with shock-induced separation at Mach num
bers in excess of 3 .  Nevertheless, results of experience to date indicate that the 
Spalart-Allmaras model is an excellent engineering tool for predicting properties 
of turbulent flows from incompressible through transonic speeds, especially for 
the aircraft applications it has been optimized for. 

Two-equation models are complete. Until the 1 990s, the k-E model was the 
most widely used two-equation model. It has been applied to many flows with 
varying degrees of success. Unfortunately, it is even more inaccurate than the 
Baldwin-Barth one-equation model for flows with adverse pressure gradient, and 
that poses a serious limitation to its general utility. Because of its inability to 
respond to adverse pressure gradient (see Table 4.9), the model is inaccurate 
for separated flows. Its predictions for free shear flows are also a bit erratic. 
The k-E model is extremely difficult to integrate through the viscous sublayer 
and requires viscous corrections simply to reproduce the law of the wall for 
an incompressible flat-plate boundary layer. No consensus has been achieved 
on the optimum form of the viscous corrections as evidenced by the number of 
researchers who have created low-Reynolds-number versions of the model (see 
Subsection 4.9. 1 ). While the model can be fine tuned for a given application, 
it is not clear that this represents an improvement over algebraic models. The 
primary shortcoming of algebraic models is their need of fine tuning for each 
new application. Although saying the k-E model always needs such fine tuning 
would be a bit exaggerated, it still remains that such tuning is too often needed. 
Given all of these well-documented flaws, it remains a mystery to this author 
why the model had such widespread use for nearly three decades. 
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The k-w model, which has replaced the k-E model as the most widely-used 
two-equation model, enjoys several advantages. Most importantly, the model 
is significantly more accurate for two-dimensional boundary layers with both 
adverse and favorable pressure gradient. Also, without any special viscous cor
rections, the model can be easily integrated through the viscous sublayer. The 
model accurately reproduces measured spreading rates for all five free shear flows 
(Table 4.4). Finally, the model matches measured properties of separated flows 
with no changes to the basic model and its closure coefficients. With viscous 
corrections included, the k-w model accurately reproduces subtle features of tur
bulence kinetic energy behavior close to a solid boundary and even describes 
boundary-layer transition reasonably well. 

Other two-equation models have been created, but they have had far less 
use than k-w and k-E models. Before such models can be taken seriously, they 
should be tested for simple incompressible boundary layers with adverse pressure 
gradient. How many interesting flows are there, after all, with constant pressure? 

The use of perturbation methods to dissect model-predicted boundary-layer 
structure is perhaps the most important diagnostic tool presented in this chap
ter. Experience has shown that a turbulence model's  ability to accurately predict 
effects of pressure gradient on boundary layers can be assessed by analyzing 
its defect-layer behavior. Specifically, models that faithfully replicate measured 
variation of Coles' wake-strength parameter, II, with the equilibrium (pressure
gradient) parameter, /3T, (see Figure 4. 1 9) also closely reproduce boundary-layer 
properties for non-equilibrium cases. Conversely, models that deviate signifi
cantly from the II vs. /3T data predict large deviations from measurements for 
non-equilibrium boundary layers. 

While two-equation models, especially the k-w model, are more general than 
less complex models, they nevertheless fail in some applications. On the one 
hand, we will see in Chapter 5 that the k-w model with a stress limiter is very 
reliable for describing boundary-layer separation induced by interaction with a 
shock wave. On the other hand, in Chapter 6, we will see that two-equation 
models are inaccurate for flows over curved surfaces. Also, two-equation models 
as presented in this chapter cannot predict secondary motions in noncircular duct 
flow. 1n both of these examples, the difficulty can be traced to the Boussinesq 
eddy-viscosity approximation. 
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Problems 

4.1 We wish to create a new two-equation turbulence model. Our ftrst variable is turbu
lence kinetic energy, k, while our second variable is the "eddy acceleration," a. Assuming 
a has dimensions (length)/(time)2 , use dimensional arguments to deduce plausible alge
braic dependencies of eddy viscosity, vT, turbulence kinetic energy dissipation rate, E, and 
turbulence length scale, f, upon k and a. 

4.2 Starting with Equations (4.4) and (4.45), defme € = {3*wk and derive an "exact" w 
equation. 

4.3 VerifY that the exact equation for the dissipation, E, is given by Equation (4.45). That 
is, derive the equation that follows from taking the following moment of the Navier-Stokes 
equation: 

au� f) 2v 
ax; OXj 

[N(ui)] = 0 

where N(ui ) is the Navier-Stokes operator defmed in Equation (2.26). 

4.4 Derive the exact equation for the enstrophy, w2, defmed by 

where 

That is, w� is the fluctuating vorticity. HINT: Beginning with the Navier-Stokes equation, 
derive the equation for the vorticity, multiply by w�, and time average. The vector identity 
u · 'V u V' 0 u · u) - u x ("v x u) should prove useful in deriving the vorticity equation. 

4.5 Beginning with the k-E model, make the fmmal change of variables € = et-twk and 
derive the implied k-w model. Express your fmal results in standard k-w model notation 
and determine the implied values for a ,  {3, {3*, a, a* and ad in terms of et-t, ed , e.2 , 
ak and Oe . 

4.6 Beginning with the k-w model and with a =  a* = 1/2 and ad = 0, make the formal 
change of variables € = {3* wk and derive the implied k-E model. Express your fmal 
results in standard k-E model notation and determine the implied values for et-t , ed , e.2, 
ak and ae in terms of a, {3, {3* ,  a and a*. Assume f13 = 1 and omit the stress limiter. 

4.7 SimplifY the k-E, k-kf, k-kr and k-r models for the log layer. Determine the value of 
Karman' s  constant, li, implied by the closure coefficient values quoted in Equations (4.49), 
(4.57), ( 4.63) and (4.66). Make a table of your results and include the value 0.40 for the 
k-w model. NOTE: For all models, assume a solution of the fonn dUjdy = ur/(!iy), 
k = u;_ / et-t and Vy = liUrY· Also, et-t = ev for the k-kf model. 

4.8 SimplifY the k-E, k-kf, k-kr and k-r models for homogeneous, isotropic turbulence. 
Determine the asymptotic decay rate for k as a function of the closure coefficient values 
quoted in Equations (4 .49), (4.57), (4.63) and (4.66). Make a table of your results and 
include the decay rate of C 1 .27 for the k-w model. (NOTE: You can ignore the (fjy)6 
contribution to eL2 for the k-kf model.) 
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4.9 Beginning with Equations (4.83), derive the self-similar form of the k-w model equa

tions for the mixing layer between a fast stream moving with velocity U1 and a slow 
stream with velocity U2 . Omit the stress limiter so that vT = kjw. 

(a) Assuming a streamfunction of the fonn 1/J(x, y) = U1xF('TJ) , transfonn the mo
mentum equation, and verifY that V is as given in Table 4.3. 

(b) Transfonn the equations for k and w. 

(c) State the boundary conditions on U and K for 111 1  - oo and for V(O). Assume 
k --l- 0 as IY I  . oo . 

(d) VerifY that if w f:. 0 in the freestream, the only boundary conditions consistent 
with the similarity solution are: 

+oo 

-:> - oo 

4.10 Using Programs WAKE, MIXER and JET (see Appendix C), determine the spread
ing rates for the five basic free shear flows according to the k-w model with and without 
the stress limiter. Compare your results in tabular fonn. HINT: The limiter is defmed in 
the anay climit(j), whose value is set in Subroutine CALCS. 

4.11 Derive Equation (4. 1 45). 

4.12 Demonstrate the integral constrdint on U1 (17) in the defect-layer solution. 

4.13 Detennine the shape factor to O(ur/Ue)  according to the defect-layer solution. 
Express your answer in terms of an integral involving U1 ( 17) . 
4.14 Using Program DEFECT (see Appendix C), determine the variation of Coles' wake 
strength, II, as a function of the equilibrium parameter, /3r, for Kok's k-w model. Mod
ifY the program, noting that Kok's model does not use the stress limiter and its closure 
coefficients are a = 5/9, j3 = 3/40, {3* = 9/100, a = 1/2, a* = 2/3 and ado = 1/2 . 
Compare your results to the correlation II - 0.60+0.51 f3r -0.01 {3�. Do your computa
tions for -0.35 ::::; f3r ::::; 20. HINT: You can accomplish all of the required modifications 
in Subroutine START by changing the values of the closure coefficients and noting that 
setting clim equal to zero turns the stress limiter off. 

4.15 Using Program DEFECT (see Appendix C), determine the variation of Coles' wake 
strength, II, as a function of the equilibrium parameter, /3r, for the Launder-Shanna k-E 
model with a stress limiter included. Make a graph that includes values obtained with 
and without a stress limiter and the correlation II = 0.60 + 0.51 f3r - 0.01 {3�. Do your 
computations for -0.35 ::::; f3r ::::; 20. HINT: The limiter is defmed in the array c/imit(j), 

whose value is set in Subroutine CALCS. Its algebraic fom1 is identical for the k-w and 
k-E models, so all you have to do is activate it for the k-E model. Set the constant c/im 

equal to 1 to maximize the effect of the limiter. 
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4.16 Consider a flow with freestream velocity Uoo past a wavy wall whose shape is 

1 
k . 21l"X 

y =- 2 8 sm Nks 

where ks is the peak to valley amplitude and Nks is wavelength. The linearized incom
pressible solution is U = Uoo + u1, V - v1 where 

I 7rU 27ry . 27ry I 7rU 27ry 
u 

N exp - N ks sm N ks , v = N exp - N ks cos 
27ry 
Nks 

Making an analogy between this linearized solution and the fluctuating velocity field in a 
turbulent flow, compute the specific dissipation rate, w = E / (fJ* k). Ignore contributions 
from the other fluctuating velocity component, w1• 

4.17 For the k-w model, very close to the surface and deep within the viscous sublayer, 
dissipation balances molecular diffusion in the w equation. Assuming a solution of the 
form w = ww /(1  + Ay)2, solve this equation for w = Ww at y = 0. Determine the 
limiting form of the solution as Ww oo. 

4.1 8  Using Program SUBLAY (see Appendix C), determine the variation of the constant 
C in the law of the wall for the k-w model with the surface value of w. Do your 
computations with (nvisc = 0) and without (nvisc = 1 )  viscous modifications. Let w;t 
assume the values 1 ,  3,  10, 30, 100, 300, 1 000 and oo. Be sure to use the appropriate 
value for input parameter iruff. Present your results in tabular form. · 

4.19 This problem studies the effect of viscous-modification closure coefficients for the 
k-w model using Program SUBLAY (see Appendix C). 

(a) Modify Subroutine START to permit inputting the values of Rk and Rw (program 
variables rk and rw). Determine the value of Rw that yields a smooth-wall constant 
in the law of the wall, C, of 5.0 for Rk = 4, 6, 8, 10  and 20. 

(b) Now make provision for inputting the value of Ri3 (program variable rb). For 
Rk - 6, determine the value of Rw that yields C = 5.0 when Rt3 = 2, 4, 8, and 
12. Also, determine the maximum value of k + tor each case. 

4.20 Consider incompressible Couette flow with constant pressure, i.e., flow between two 
parallel plates separated by a distance H, the lower at rest and the upper moving with 
constant velocity U w .  

y 

X 

Problems 4.20 and 4.21 
(a) Assuming the plates are infmite in extent, simplify the conservation of mass and 

momentum equations and verify that 

( 
dU 2 

v + vr ) = UT dy 
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(b) Now ignore molecular viscosity. What boundary condition on U is appropriate at 
the lower plate? 

(c) Introducing the mixing length given by 

fmix = �y(1 - yj H) 

solve for the velocity across the channel. HINT: Using partial fractions: 

1 1 1 
------�� = - + �--� 
y( 1 - y/H) y (H - y) 

Don't forget to use the boundary condition stated in Part (b). 

(d) Develop a relation between friction velocity, Ur ,  and the average velocity, 

• 
1 

Uavg = 
H 0 

H 
U(y) dy 

(e) Using the k-w model, simplifY the equations for k and w with the same assumptions 
made in Parts (a) and (b). 

(f) Deduce the equations for k and w that follow from changing independent variables 
from y to U so that 

d 2 d 
1/1• dy 

= UT dU 

(g) Assuming k = u?,. j.JiF, simplifY the equation for w. NOTE: You might want to 
use the fact that aV/F �2 = f3o - aj3* . 

4.21 For incompressible, laminar Couette flow, we know that the velocity is given by 

y 
U = Uw �  

H 

where Uw is the velocity of the moving wall, y is distance form the stationary wall, and 
H is the distance between the walls. 

(a) Noting that the stress limiter is inactive for laminar flow, determine the maximum 
Reynolds number, 

ReHc = Uw Hc/V 

at which the flow remains laminar according to the high-Reynolds-number version 
of the k-w model. To arrive at your answer, you may assume that 

6v 

W = 
0 :S y < H /2 

H /2 :S y :S H 

(b) Above what Reynolds number is w amplified? 
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4.22 Using Program PIPE (see Appendix C), compute the skin friction for channel flow 
according to the Baldwin-Barth and Spalart-Allmaras models. Compare your results 
with the Halleen-Johnston correlation [Equation (3 . 1 3 9)] for 103 ::; ReH ::; 105 . Also, 
compare the computed velocity profiles for ReH - 13750 with the Mansour et al. DNS 
data, which are as follows. 

I y/(H/2) I U/Urn y/(H/2) U/Um II y/(H/2) U/Urn 
0.000 0.000 0.404 0.887 0.805 0.984 
0. 1 03 0.7 1 7  0.500 0.91 7  0.902 0.995 
0.207 0.800 0.602 0.945 1 .000 1 .000 
0.305 0.849 0.7 1 0  0.968 

4.23 Using Program PIPE (see Appendix C), compute the skin friction for pipe flow 
according to the Baldwin-Barth and Spalart-Allmaras models. Compare your results with 
the Prandtl correlation [Equation (3 . 140)] for 103 ::; Rev ::; 106 . Also, compare the 
computed velocity profiles for ReD = 40000 with Laufer's data, which are as follows. 

I y/ (D/2) I U /Urn II y/(D/2) I U/Urn yj(D/2) U/Urn 
0.0 1 0  0.333 0.390 0.868 0.800 0.975 
0.095 0.696 0.490 0.902 0.900 0.990 
0.2 1 0  0.789 0.590 0.93 1 1 .000 1 .000 
0.280 0.833 0.690 0.961 

4.24 The object of this problem is to compare predictions of one- and two-equation models 
with measured properties of a turbulent boundary layer with adverse 'Vp. The experiment 
to be simulated was conducted by Schubauer and Spangenberg [see Coles and Hirst 
( 1 969) - Flow 4800) . Use Program EDDYBL, its menu-driven setup utility, Program 
EDDYBLDATA, and the input data provided on the companion CD (see Appendix C). 
Do 3 computations using the Baldwin-Barth model, the k-w model with viscous modifi
cations and one of the k-E models and compare computed skin friction with the following 
measured values. 

r s c ft) 1 • II s (ft) I c f . I s (ft) I CJ I 
2.000 3.39 ·10--:J" rr 10.333 2.06 ·10-7 1 7.000 o.94 -1o-7 

4.500 2.94 · 1 0 -3 1 3 .667 1 .6 1 · 1 0 -3 1 7.833 0.49· 10-3 

7.000 2.55 · 1 0 --3 1 5.333 1 .39 ·10-3 

4.25 The object of this problem is to compare predictions of one- and two-equation 
models with measured properties of a turbulent boundary layer with adverse 'Vp. The 
experiment to be simulated was conducted by Ludwieg and Tillman [see Coles and Hirst 
( 1 969) - Flow 1 200] . Use Program EDDYBL, its menu-driven setup utility, Program 
EDDYBL.J)ATA, and the input data provided on the companion CD (see Appendix C). 

Do 3 computations using the k-w, Baldwin-Barth and Jones-Launder models and compare 
computed skin friction with the following measured values. 

I s (m) Cj s (m) I CJ I 
0.782 2.92 · 10- 2.282 1 .94· 1 0 --
1 .282 2.49 ·10 -3 2.782 1 .5 5 · 1 0 -3 

1 .782 2.05 · 1 0 -3 
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4.26 The object of this problem is to compare predictions of one- and two-equation models 
with measured properties of a turbulent boundary layer with adverse 'V p. The experiment 

to be simulated was conducted by Schubauer and Spangenberg [see Coles and Hirst 

(1 969) - Flow 4400]. Use Program EDDYBL, its menu-driven setup utility, Program 

EDDYBL.DATA, and the input data provided on the companion CD (see Appendix C). 
Do 3 computations using the k-w model, one of the k-c models and the Spalart-Allmaras 
model and compare computed skin friction with the following measured values. 

I 8 (ft) I Cf II 8 (ft) I CJ 8 (ft) 
1 . 167 3 .40· 10- 3 .667 2.86 ·10- 6. 1 67 
2.000 3 . 1 7· 10-3 4.500 2.38 · 10-3 
2.833 3 . 1 0· 10-3 5.333 1 .97· 10-3 

4.27 The object of this problem is to compare predictions of one- and two-equation models 
with measured properties of a turbulent boundary layer with adverse 'V p. The experiment 
to be simulated was conducted by Stratford [see Coles and Hirst (1 969) - Flow 5300). 
Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL.DATA, and 
the input data provided on the companion CD (see Appendix C). Do 3 computations 
using the k-w model, one of the k-c models and the Spalart-Allmaras model and compare 
computed skin friction with the following measured values. 

I 8 (ft) I Cf. II 8 (ft) I Cf. I 
2.907 3 .68 · 10- 3.53 1 0.55 · 10-
2.999 2.07 · 10-3 4. 1 03 0.53 · 10-3 
3 .038 0.99 -lo-3 

4.28 The object of this problem is to predict the separation point for flow past a circular 
cylinder with the boundary-layer equations, using the measured pressure distribution. The 
experiment to be simulated was conducted by Patel ( 1 968). Use Program EDDYBL 

and its menu-driven setup utility, Program EDDYBL.DATA, to do the computations (see 
Appendix C). 

.. ... ... ... ... ... ... _ _ _ _ _  _ 
u 

Wake 

... .. - - - - _ _ _  ,.. _ _ _ _ _ _  _ 

Problem 4.28 

(a) Set freestream conditions to Ptoo = 2147.7 lb/ft2, Ttoo = 529.6° R, MOCJ = 0. 1 44 
(PT l ,  TT l ,  XMA); use an initial stepsize, initial arclength and fmal arclength 
diven by Lls = 0.00 1 ft, si = 0.262 ft and Sf = 0.785 ft (DS, SI, SSTOP); set the 
initial boundary-layer properties so that c t = 0.00600, t5 = 0.006 ft, H = 1 .40, 
Reo = 929, (CF, DELTA, H, RETHET); set the maximum number of steps to 
1 000 (lEND 1 ); and set up for N = 4 7 points to define the pressure BER). 
Use the following data to defme the pressure distribution. The initial and final 
pressure gradients are zero. Use zero heat flux at the cylinder surface. Finally, set 
the curvature, n -1 ' equal to 4 ft - 1 .  
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I 8 (ft) 
0.0000 

0.0025 

0.0050 

0.0075 

0.0100 

0.0125 

0.0250 

0.0375 

0.0500 

0.0625 

0.0750 

0.0875 

0.1000 

0.1125 

0.1250 

0.1375 

Pe (lb/ft2) 
2.147540 · 10 

2.147528· 103 

2.147491 · 103 

2.147429 · 10 3 

2.147343 ·103 

2.147233 · 103 

2.146314 · 103 

2 .144796·103 

2.142688 · 103 

2.140018 · 103 

2.136807 · 103 

2.134021· 1 03 

2.130641 · 1 03 

2.127261 · 1 03 

2.123881 · 103 

2.120194 · 103 

8 (ft) 
0.1500 

0.1625 

0.1750 

0.1875 

0.2000 

0.2125 

0.2250 

0.2375 

0.2500 

0.2625 

0.2750 

0.2875 

0.3000 

0.3125 

0.3250 

0.3375 

Pe (lb/ft2) 
2.116199· 1 0  

2.112205· 103 

2.107903 · 103 

2.103448· 10 3 

2.0983 78 · 1  03 

2.093155· 10 3 

2.087317 · 103 

2.081325 · 1 03 

2.075334·103 

2.069189 · 103 

2.064580 · 10 3 

2.060893 · 103 

2.058588 · 1 03 

2.056898 · 103 

2.055823 · 103 

2.055362 · 103 

II 8 (ft) 
0.3500 

0.3625 

0.3750 

0.3875 

0.4000 

0.4125 

0.4250 

0 .4375 

0.4500 

0 .4625 

0.4750 

0.4875 

0.5000 

0.6500 

0.7850 

I Pe (lb/ft2) 
2.055516 · 1 0  

2.056591 · 1 03 

2.058435 · 1 03 

2.061661· 1 03 

2.066423 · 1  03 

2.071954 · 1 03 

2.079021 · 1  o3 

2.0854 73 · 1  03 

2.089161· 103 

2.091004 · 1 03 

2.092080 · 1 03 

2.092230 · 1 03 

2.092230· 1 0 3 

2.09223 0 · 1 03 

2.092230 · 1 03 

I 

(b) Do three computations using the low-Reynolds-number k-w model, the Launder
Shatma k-E model and the Spalart-Allmaras model. The radius of the cylinder 
is R = 0.25 ft, so that separation arclength, Bsep, is related to this angle by 

Bsep = 7T - Ssep/ R. 
4.29 Compute Driver and Seegmiller's ReH = 37500 backstep flow using the Baldwin
Lomax algebraic model. Use Program EDDY2C, its menu-driven setup utility, Program 
EDDY2C..DATA, and the input data provided on the companion CD (see Appendix C). 

(a) You must frrst run Program EDDYBL to establish flow properties at the upstream 
boundary. ModifY the supplied input-data file eddybl.dat, using trial and error to 
adjust the "Maximum Arclength" (SSTOP) so that the Reynolds number based on 
momentum thickness is 5000. 

(b) ModifY the supplied input-data file eddy2c.dat for Program EDDY2C to run the 
computation 1000 timesteps (NEND). 

(c) Make graphs of the "residual" and the value of reattachment length, xr / H, as 
functions of timestep number. 

(d) Discuss the value of X r/ H predicted by the Baldwin-Lomax model relative to the 
measured value and the values predicted by the k-w and k-E models. 

NOTE : This computation will take about 30 minutes of CPU time on a 3-GHz Pentium-D 
microcomputer. 

4.30 C ompute Jovic's ReH = 5000 backstep flow using the Baldwin-Lomax algebraic 
model. Use Program EDDY2C, its menu-driven setup utility, Program EDDY2C_DATA, 

and the input data provided on the companion CD (see Appendix C). 

(a) You must first run Program EDDYBL to establish flow properties at the upstream 
boundary. ModifY the supplied input-data file eddybl.dat, using trial and error to 

adjust the "Maximum Arclength" (SSTOP) so that the Reynolds number based on 

momentum thickness is 609. 

(b) ModifY the supplied input-data file eddy2c.dat for Program EDDY2C to run the 

computation 1 0000 timesteps (NEND). 
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(c) Make graphs of the "residual" and the value of reattachment length, xr/ H, as 
functions of timestep number. 

(d) Discuss the value of xr/ H predicted by the Baldwin-Lomax model relative to the 
measured value and the value predicted by the k-w model. 

NOTE: This computation will take about 3 hours of CPU time on a 3-GHz Pentium-D 
microcomputer. 
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ress1 

For flows in which compressibility effects are important, we must introduce an 
equation for conservation of energy and an equation of state. Just as Reynolds 
averaging gives rise to the Reynolds-stress tensor, so we expect that similar 
averaging will lead to a turbulent heat-flux vector. We should also expect that 
new compressibility-related correlations will appear throughout the equations of 
motion. These are important issues that must be addressed in constructing a 
turbulence model suitable for application to compressible flows, which can be 
expected to apply to constant-property (low-speed) flows with heat transfer. 

We begin with a discussion of observations pertaining to compressible tur
bulence. Then, we introduce the Favre mass-averaging procedure and derive the 
mass-averaged equations of motion. Next, we demonstrate an elegant turbulence
modeling development for the compressible mixing layer. We follow this analysis 
with an application of petturbation methods to the compressible log layer. We 
then apply several models to attached compressible boundary layers, including 
effects of pressure gradient, surface cooling and surface roughness. The chapter 
concludes with application of various models to shock-separated flows. 

5. 1 Physi Consi ns 

By definition, a compressible flow is one in which significant density changes 
occur, even when pressure changes are small. It includes low-speed flows with 
large heat-transfer rates. Models for high-speed flows seem to fit the limited data 
quite well (perhaps with the exception of combusting flows). Generally speaking, 
compressibility has a relatively small effect on turbulent eddies in wall-bounded 
flows. This appears to be true for Mach numbers up to about 5 (and perhaps as 
high as 8), provided the flow doesn't experience large pressure changes over a 

239 
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short distance such as we might have across a shock wave. At subsonic speeds, 
compressibility effects on eddies are usually unimportant for boundary layers pro
vided T w /Te < 6. Based on these observations, Morkovin ( 1 962) hypothesized 
that the effect of density fluctuations on the turbulence is small provided they 
remain small relative to the mean density. So, Gatski and Sommer ( 1 998) have 
confirmed the hypothesis for a Mach 2.55 flat-plate boundary layer, showing that 
DNS turbulence statistics match those of an incompressible boundary layer. This 
is a major simplification for the turbulence modeler because it means that, in 
practice, we need only account for the nonuniform mean density in computing 
compressible, shock-free, non-hypersonic turbulent flows. 

There are limitations to the usefulness of Morkovin's hypothesis even at 
non-hypersonic Mach numbers. For example, it is not useful in flows with 
significant heat transfer or in flows with combustion because p' / p is typically 
not small. Also, density fluctuations generally are much larger in free shear 
flows, and models based on Morkovin's  hypothesis fail to predict the measured 
reduction in spreading rate with increasing freestream Mach number for the 
compressible mixing layer [e.g., Papamoschou and Roshko ( 1 988)] . As we will 
see in Section 5.5, the level of p' / p for a boundary layer at Mach 5 is comparable 
to the level found in a mixing layer at Mach 1 .  However, in addition, there seem 
to be qualitative changes in mixing-layer structure as Mach number increases. 

On dimensional grounds, we expect the velocity in a turbulent boundary layer 
to depend, at a minimum, upon basic fluid properties such as Prandtl number, 
PrL, and specific-heat ratio, 'Y· We also expect it to depend upon the following 
three dimensionless groupings: 

Vw 

Sublayer scaled 
distance 

' 

Dimensionless 
heat transfer 

Turbulence 
Mach number 

(5. 1) 

where subscript w denotes surface value, q is heat flux, cp is specific-heat coef
ficient at constant pressure, T is temperature and a is sound speed. Based on the 
mixing-length model and assuming that, in analogy to the incompressible case, 

8U rw/P 
-=-a-y � KY 

(5.2) 

where p now depends upon y. Van Driest ( 1 95 1 )  argued1 that by rescaling the 
velocity according to 

v* 1 . 1 Sill 
A 

2A2(UjuT ) - B 
JB2 + 4A2 

B 
../B2 + 4A2 

(5.3) 

1 The Van Driest argument also requires assuming the turbulent Prandtl number [ defmed in Equa
tion (5. 54)] is constant. 

.. . .. 
' ' ' 
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where A and B are functions of q;!; and Mr [see Equation (5. 1 0 1 )  below], the 
velocity is 

u* 1 -f.ny+ + C 
K, 

(5 .4) 

Equation (5 .4) is the compressible law of the wall. Correlation of measurements 
shows that "' and C are nearly the same as for incompressible boundary layers 
[Bradshaw and Huang ( 1 995)] . In principle, however, C is a function of Mr 
and q;t since it includes density and viscosity effects in the viscous wall region. 

Section 5.6 provides additional detail that explains why we should expect 
the velocity to scale according to Equation (5 .3) in a compressible boundary 
layer. In general, the compressible law of the wall correlates experimental data 
for adiabatic walls reasonably well (Section 5 .7). It is less accurate for non
adiabatic walls, especially for very cold walls (probably because C varies with 
q;t, although data are scarce). An analogous variation of temperature with these 
parameters can be deduced that is satisfactory for low-speed flows. However, 
its use is limited because of sensitivity to pressure gradient, even in low-speed 
flows. Bradshaw and Huang (1 995) provide additional detail. 

As a final observation, note that the difficulty in predicting properties of the 
compressible mixing layer is reminiscent of our experience with free shear flows 
in Chapters 3 and 4. That is, we find again that the seemingly simple free shear 
flow case is more difficult to model than the wall-bounded case·. · 

5.2 vre Av 

In addition to velocity and pressure fluctuations, we must also account for den
sity and temperature fluctuations when the medium is a compressible fluid. If 
we use the standard time-averaging procedure introduced in Chapter 2, the mean 
conservation equations contain additional terms that have no analogs in the lam
inar equations. To illustrate this, consider conservation of mass. We write the 
instantaneous density, p, as the sum of mean, p, and fluctuating, p1 ,  parts, i.e., 

p j5 + PI 
(5.5) 

Expressing the instantaneous velocity in the usual way [Equation (2.4)] , substi
tuting into the continuity equation yields 

a ( _ I ) a ( -u � u  _ 1 1 1 ) � p + p + � p i + p i + pui + p ui = 0 
uf UXi 

(5 .6) 

After time averaging Equation (5 .6), we arrive at the Reynolds-averaged conti
nuity equation for compressible flow, viz., 

a- a 
-::-p + pU· + p1u1 -- 0 at axi t t (5 .7) 
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Some authors refer to this as the primitive-variable form of the continuity 
equation. Note that in order to achieve closure, an approximation for the correla
tion between p' and u� is needed. The problem is even more complicated for the 
momentum equation where the Reynolds-stress tensor originates from time aver
aging the product puiuj that appears in the convective acceleration. Clearly, a 
triple correlation involving p', u� , and uj appears, thus increasing the complexity 
of establishing suitable closure approximations. 

The problem of establishing the appropriate fonn of the time-averaged equa
tions can be simplified dramatically by using the density-weighted averaging 
procedure suggested by Favre ( 1 965). That is, we introduce the mass-averaged 
velocity, Ui , defined by 

t+T 
p(x, T)ui (x, T) dT (5 .8) 

where p is the conventional Reynolds-averaged density. Thus, in terms of con
ventional Reynolds averaging, we can say that 

- - (5 .9) 

where an overbar denotes conventional Reynolds average. The value of this aver
aging process, known as Favre averaging, becomes obvious when we expand the 
right-hand side of Equation (5.9). Performing the indicated Reynolds-averaging 
process, there follows 

pui pUi + p'u� (5 . 1 0) 

Inspection of Equation ( 5 .  7) shows that conservation of mass can be rewritten as 

at 
+ axi PUi 0 (5 . 1 1 ) 

This is a remarkable simplification as Equation ( 5 . 1 1 ) looks just like the laminar 
mass-conservation equation. What we have done is treat the momentum per unit 
volume, pui , as the dependent variable rather than the velocity. This is  a sensible 
thing to do from a physical point of view, especially when we focus upon the 
momentum equation in the next section. That is, the rate of change of momentum 
per unit volume, not velocity, is equal to the sum of the imposed forces per unit 
volume in a flow. 

When we use Favre averaging, it is customary to decompose the instantaneous 
velocity into the mass-averaged part, ui , and a fluctuating part, u�' , wherefore 

(5 . 1 2) 

Now, to form the Favre average, we simply multiply through by p and do a time 
average in the manner established in Chapter 2.  Hence, from Equation (5 . 1 2) 
we find 

(5. 13) 
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But, from the definition of the Favre average given in Equation (5.9), we see 
immediately that, as expected, the Favre average of the fluctuating velocity, u�1, 
vanishes, i.e., 

pu�l 0 (5. 1 4) 

By contrast, the conventional Reynolds average of u�1 is not zero. To see this, 
note that 

Hence, using Equation (5 . 1 0) to eliminate Ui, 

u" z 
plul 

u ·  - U· - t 
t t -p 

Therefore, perfouning the conventional Reynolds average, we find 

I I 
u�� - - p ui -L 0 t - I p 

(5 . 1 5) 

(5 . 1 6) 

(5 . 1 7) 

As a final comment, do not lose sight of the fact that while Favre averaging 
eliminates density fluctuations from the averaged equations, it does not remove 
the effect the density fluctuations have on the turbulence. Consequently, Favre 
averaging is a mathematical simplification, not a physical one. 

5.3 Favre-Av Equations 

For motion in a compressible medium, we must solve the equations governing 
conservation of mass, momentum and energy. The instantaneous equations are 
as follows: 

8p 8 
8t 

+ 
8xi 

(pui ) 0 

8 8 8p 8t · ·  
J J 

(5. 1 8) 

(5. 1 9) 

8 1 8 1 8 8qj 
8t p e + -2 UiUi + pUj h + -UiUi 

8 
(uitij ) -

8 
(5.20) &j 2 Xj Xj 

where e is specific internal energy and h e + pj p is specific enthalpy. For 
compressible flow, the viscous stress tensor, tii , involves the second viscosity, (, 
as well as the conventional molecular viscosity, p,. Although it is not necessary 
for our immediate purposes, we eventually must specify an equation of state. For 
gases, we use the perfect-gas law so that pressure, density and temperature are 
related by 

(5 .2 1) 
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where R is the perfect-gas constant. The constitutive relation between stress and 
strain rate for a Newtonian fluid is 

8uk tij = 2J.LSij + (8 <Sij Xk 
(5 .22) 

where Sij is the instantaneous strain-rate tensor [Equation (2. 1 9)] and Oij is the 
Kronecker delta. The heat-flux vector, qj , is usually obtained from Fourier' s  law 
so that 

8T 
Qj - K, 

(5 .23) 8x · J 

where "" is thermal conductivity. We can simplify our analysis somewhat by 
introducing two commonly used assumptions. First, we relate second viscosity 
to J.L by assuming 

(5 .24) 

This assumption is correct for a monatomic gas, and is generally used for all 
gases in standard CFD applications. Assuming Equation (5 .24) holds in general 
guarantees tii 0 so that viscous stresses do not contribute to the pressure, even 
when Sii 8ud 8xi i= 0. This is tidy, even if not necessarily true. Second, 
we assume the fluid is calorically perfect so that its specific-heat coefficients are 
constant, and thus the specific internal energy, e, and specific enthalpy, h, are 

and (5 .25) 

where Cv and cp are the specific-heat coefficients for constant volume and pres
sure processes, respectively. Then, we can say that 

8T 
Qj = - K, --=---

8x · J 

where Pr L is the laminar Prandtl number defined by 

(5.26) 

(5 .27) 

In order to mass average the conservation equations, we now decompose the 
various flow properties as follows. 

Ui ui + u�' 
p j5 + p' 

p P + p' -
h - h + h" (5 .28) 
e -- e + e" 

-
T T + T" 
Qj QLj + qj 
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Note that we decompose p, p and qj in terms of conventional mean and fluc
tuating parts. Substituting Equations (5 .28) into Equations (5 . 1 8) - (5 .2 1 )  and 
performing the mass-averaging operations, we arrive at what are generally re
ferred to as the Favre (mass) averaged mean conservation equations. 

a -
at P 

a15 a ( _ _  ) 0 at + axi PUi 

- -
- -- u · u ·  h + t t 
2 

pu�'u�' 
+ - t t Uj 2 

-- --
ax · J 

-q - pu"h" + t · ·u�' - ou'! lu�'u�' Lj J Jt t ,.. .J 2 t t 

a -+ Ui ax · J 
-

P pRT 

(5 .29) 

(5 .30) 

(5.3 1 )  

(5.32) 

Equations (5 .29) and (5.32) are identical to their laminar counterparts and Equa
tion (5 .30) differs only by appearance of the Favre-averaged Reynolds-stress 

• 
tensor, vtz., 

-pu�'u" l J (5 .33) 

As in the incompressible case, the Favre-averaged Tij is a symmetric tensor. 
Equation (5 .3 1 ) , the Favre-averaged mean-energy equation for total energy, 

i.e., the sum of internal energy, mean-flow kinetic energy and turbulence kinetic 
energy has numerous additional terms, each of which represents an identifiable 
physical process or property. Consider first the double correlation between u�' 
and itself that appears in each of the two terms on the left-hand side. This is 
the kinetic energy per unit volume of the turbulent fluctuations, so that it makes 
sense to define 

} ----;-;--;-; 
Pk = -pu"u" 2 t t (5 .34) 

Next, the correlation between u'j and h" is the turbulent transport of heat. 
In analogy to the notation selected for the molecular transport of heat, we define 

(5.35) 

The two terms tj iu�' and pu'j �u�'u�' on the right-hand side of Equation (5 .3 1 )  
correspond to molecular diffusion and turbulent transport of turbulence kinetic 
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energy, respectively. These terms arise because the mass-averaged total enthalpy 
appearing in the convective term of Equation ( 5 .3 1 )  is the sum of mass-averaged 
enthalpy, mean kinetic energy and turbulence kinetic energy. They represent 
transfers between mean energy and turbulence kinetic energy that naturally arise 
when we derive the Favre-averaged turbulence kinetic energy equation. The 
simplest way to derive the equation for k is to multiply the primitive-variable 
fmm of the instantaneous momentum equation by u�' and time average. 

"
aui " 

aui " 
ap 

" atji  (5 36) pui at 
+ pui Uj a 

-Ui a 
+ Ui a 

. 
x · x ·  x ·  J 1. J 

As in Chapter 2, the most illuminating way to call'y out the indicated time
averaging operations is to proceed term by term, and to use tensor notation for all 
derivatives. Proceeding from left to right, we first consider the unsteady term. 

pu�' (u . + u�') 2 2 2 't 

pu�' u · + pu�' u�' 2 2 ,t 2 2 t ' 

P( lu'.' u�') 2 2 2 ,t 

at p 2ui ui at 
(5.37) 

Turning now to the convective term, we have the following. 

--

au - 2 -p'Tij a x ·  J 

Pu . lu�'u�' + pu" lu"u" ) 2 2 2  ] 2 2 2  

a 
+ -=--&x · J 

P-u1·k + pu" lu"u" J 2 2 2 
a 

- lu"u" (pu · ) 2 2 2 ax . J 
J 

(5 .38) 

The pressure-gradient term simplifies immediately as follows. 

u"p · = u" P · + u"pl 
z , t  'l , t 'l , t  

&un - p' 2 

a xi 
(5.39) 

Finally, the viscous term is simply rewritten as 
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!:::1 , ----:-;, !:::1 II lit u -t II uui 
Ui ji,j = O jiUi - tj i-=!:::1� Xj UXj 

(5 .40) 

Thus, substituting Equations (5.37) through (5.40) into Equation (5.36), we 
arrive at the Favre-averaged turbulence kinetic energy equation. In arriving 
at the final result, we make use of the fact that the sum of the last terms on 
the right-hand sides of Equations (5 .37) and (5 .38) vanish since their sum is 
proportional to the two terms appearing in the instantaneous continuity equation. 
Additionally, to facilitate comparison with the incompressible turbulence kinetic 
energy equation [Equation (4.4)], we use the Favre-averaged continuity equation 
to rewrite the unsteady and convective terms in non-conservation form. The 
exact equation is as follows. 

ak _ ok 
P at + pu_1 axj 

-

ou · - t PTij !:::1 ux · J 
au�' a -· t . . t + 

-::--J t  ox . ox . J J 
au�' p' t 
ox · j. 

� ....... ...., " - V' 
Pressure Work Pressure Dilatation 

t · ·u'.' - pu'( lu'.'u'.' - p'u'! ) t t J 2 t t J 

(5 .4 1 )  

Comparing the mean energy Equation (5.3 1 )  with the turbulence kinetic en
ergy Equation (5.4 1 ), we see that indeed the two terms tjiu�' and pu'j �u�'u�' on 
the right-hand side of the mean-energy equation are Molecular Diffusion and 
Turbulent Transport of turbulence kinetic energy. Inspection of the turbulence 
kinetic energy equation also indicates that the Favre-averaged dissipation rate 
is given by 

!:::1 II !::lUI./ UU · U t + J 
OXj OXi 

(5.42) 

where s�j is the fluctuating strain-rate tensor. This is entirely consistent with the 
definition of dissipation for incompressible flows given in Equation (4.6). 

Comparison of Equation (5 .4 1 )  with the incompressible equation for k [Equa
tion (4.4)] shows that all except the last two terms, i.e., the Pressure Work and 
Pressure- Dilatation tenns, have analogs in the incompressible equation. Both 
of these terms vanish in the limit of incompressible flow with zero density fluc
tuations. The Pressure Work vanishes because the time average of u�' is zero 
when density fluctuations are zero. The Pressure- Dilatation term vanishes be
cause the fluctuating field has zero divergence for incompressible flow. Hence, 
Equation (5.4 1 )  simplifies to Equation (4.4) for incompressible flow with zero 
density fluctuations. 
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pi a II au" u . . t + J 
ax . axi J 

(5 .44) 

(5 .45) 

pCij k pu�' u'j u% + p1 u�1 8j k + p1 u'j 8ik ( 5 .46) 

Taking advantage of the definitions given in Equations (5.33), (5 .34), (5.35) 
and (5 .42), we can summarize the Favre-averaged mean equations and turbulence 
kinetic energy equation in conservation form. 

a a 
a 

(f5E) + 
a 

(f5ujH) t X · J 

-

(5 .47) 

(5 .48) 

a + t  II Il l II II 
a -qL1 - qT1 jiUi - puJ. 2ui ui x ·  J 

+ 
x ·  J 

(5 .49) 

au · a 
PTiJ' a 

t - pE + 
a 

t .  ·u" - pu" lu"u" - p1u11 J t t J 2 t t J x ·  x J J 
� aP au" u�' + p' t (5 .50) axi axi 
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(5 .5 1 )  

The quantities E and H are the total energy and total enthalpy, and include 
the kinetic energy of the fluctuating turbulent field, viz., 

and H (5.52) 

5.4 Compressible-Flow Closure Approximations 

As discussed in the preceding section, in addition to having variable mean den
sity, p, Equations (5.43) through (5 .52) reflect effects of compressibility through 
various correlations that are affected by fluctuating density. For all but stress
transport models, diffusivity-type closure approximations are usually postulated 
for the mass-averaged Reynolds-stress tensor and heat-flux vector. Depending 
on the type of turbulence model used, additional closure approximations may be 
needed to close the system of equations defining the model. 

This section briefly reviews some of the most commonly used closure ap
proximations for compressible tlows. Because of the paucity of measurements 
compared to the incompressible case, and the additional complexities attending 
compressible flows, far less is available to guide development of closure ap
proximations suitable for a wide range of applications. As a result, modeling of 
compressibility effects is in a continuing state of development as we begin the 
twenty-first century. The closure approximations discussed in this, and follow
ing, sections are those that have either stood the test of time or show the greatest 

• 
promise. 

Before focusing upon specific closure approximations, it is worthwhile to 
cite important guidelines that should be followed in devising compressible-flow 
closure approximations. Adhering to the following items will lead to the simplest 
and most elegant models. 

1 .  All closure approximations should approach the proper limiting value for 
Mach number and density fluctuations tending to zero. 

2 .  All closure terms should be written in proper tensor form, e.g., not depen
dent upon a specific geometrical configuration. 

3. All closure approximations should be dimensionally consistent and invari
ant under a Galilean transformation. 

It should be obvious that Items 2 and 3 apply for incompressible flows as 
well. In practice, Galilean invariance seems to be ignored more often than any 
other item listed, especially for compressible flows. Such models should be 
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rejected as they violate a fundamental feature of the Navier-Stokes equation, 
and are thus physically unsound. We must be aware, for example, that total 
enthalpy, H, includes the kinetic energy and is not Galilean invariant, so its use 
as a dependent variable requires caution. For instance, it must not be used in -
diffusivity format in the manner that h is used in Equation (5 .54) below. 

5.4.1 Reynolds-Stress Tensor 

For zero-, one- and two-equation models, nearly all researchers use the Boussi
nesq approximation with suitable generalization for compressible flows. Specifi
cally, denoting the eddy viscosity by J.lT, the following form is generally assumed. 

-pu�'u" z J (5 .53) 

The most important consideration in postulating Equation (5 .53) is guaranteeing 
that the trace of Tij is -2k. Note that this means the "second eddy viscosity" 
must be - �J.lT [recall Equation (5 .24)] . 

5.4.2 Turbulent Heat-Flux Vector 

The most commonly used closure approximation for the turbulent heat-flux vec
tor, qT . ,  follows from appealing to the classical analogy [Reynolds ( 1 874)] be-

J 
tween momentum and heat transfer. It is thus assumed to be proportional to the 
mean temperature gradient, so that 

-
J.lTCp 8T qT.  = pu'jh" = - p a 1 TT Xj 

(5 .54) 

where PrT is the turbulent Prandtl number. A constant value for PrT is often 
used and this is usually satisfactory for shock-free flows up to low supersonic 
speeds, provided the heat transfer rate is not too high. The most common values 
assumed for PrT are 0.89 or 0.90, in the case of a boundary layer. Heat-transfer 
predictions can usually be improved somewhat by letting PrT vary through the 
boundary layer. Near the edge of a boundary layer and throughout a free shear 
layer, a value of the order of 0.5 is more appropriate for PrT. 

5.4.3 Molecular Diffusion and Turbulent Transport 

If a zero-equation model is used, the �pk5ij contribution in Equation (5 .53) is 

usually ignored as are the molecular diffusion, tjiu�', and turbulent transport, 
pn'j � u�' u�' , terms appearing in the mean-energy equation. Some researchers 

• ' 
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ignore these terms for higher-order models as well. This is usually a good ap
proximation for flows with Mach numbers up to the_ supersonic range, which 
follows from the fact that pk « P (and hence k « h) in most flows of engi
neering interest. However, at hypersonic speeds, it is entirely possible to achieve 
conditions under which pk is a significant fraction of P. To ensure exact con
servation of total energy (which includes turbulence kinetic energy), additional 
closure approximations are needed. The most straightforward procedure for one
equation, two-equation and stress-transport models is to generalize the low-speed 
closure approximations for the molecular diffusion and turbulent transport tetms. 
The most commonly used approximation is: 

t · ·u" - pu" 1 u"u" = J� i j 2 i i 

5.4.4 Dilatation Dissipation 

(5 .55) 

To understand what "dilatation dissipation" is, we must examine the turbulence
energy dissipation rate more closely. Recall from Equation (5 .42) that 

Hence, in terms of the instantaneous strain-rate tensor, Sij , we have 

2 II 2 II SJiS ·  · - - Uk kU·  · �J 3 , t , � 

(5 .56) 

(5 .57) 

Assuming that the correlation between velocity-gradient fluctuations and kine
matic viscosity fluctuations is negligible, we can rewrite this equation as 

2�;-;----..{jf. = D 2ps'!. s�'. - -pu" u�' . J � tJ 3 k ,k � ,� 

In terms of the fluctuating vorticity, w�', there follows 

2-�-;-;-pf. = D pw"w" + 2pu'.' .u" . -- -pu" .u�' . t t t,] J ,t 3 t ,t t ,t 

(5 .58) 

(5.59) 

Finally, we can say u�:iu'J,i � ( u�:i)2 ,  which is exactly true for homogeneous 
turbulence, and is a very good approximation for high-Reynolds-number, inho
mogeneous turbulence [see, for example, Tennekes and Lumley ( 1 983)]. Hence, 
we conclude that the dissipation can be written as 

(5 .60) 
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P- = D pw�' w�' Es t t and (5.6 1 )  

Thus, we have shown that the compressible turbulence dissipation rate can 
logically be written in terms of the fluctuating vorticity and the divergence of 
the fluctuating velocity. Equivalently, we could have written the fluctuating 
velocity as the sum of a divergence-free and a curl-free component. At high 
Reynolds number, these components presumably are uncorrelated (again, an exact 
result for homogeneous turbulence), and Equation (5 .59) would follow directly. 
The quantity Es is known as the solenoidal dissipation, while Ed is known as 
the dilatation dissipation. Clearly, the latter contribution is present only for 
compressible flows. 

Based on observations from some older Direct Numerical Simulations (DNS), 
Sarkar et al. ( 1989) and Zeman ( 1990) postulate that the dilatation dissipation 
should be a function of turbulence Mach number, Mt , defined by 

(5 .62) 

where a is the speed of sound. They further argue that the k and E equations 
should be replaced by 

(5 .63) 

(5.64) 

where C,""-2 is a closure coefficient. Only the dissipation terms are shown explic
itly in Equations (5.63) and (5 .64) since no changes occur in any other tenns. 
Particularly noteworthy, both Sarkar and Zeman postulate that the equation for 
Es is unaffected by compressibility. The dilatation dissipation is further assumed 
to be proportional to Es so that they say 

(5 .65) 

where C is a closure coefficient and F(Mt ) is a prescribed function of Mt . The 
Sarkar and Zeman formulations differ in the value of .;* and the functional form 
of F ( Mt) ,  which we will discuss in Section 5.5. 

Interestingly, while both Sarkar and Zeman arrive at similar formulations, 
their basic postulates are fundamentally different. Sarkar et al. postulate that Ed 
"varies on a fast compressibility time scale relative to E 8 . "  As a consequence, 
they conclude that dilatation dissipation increases with Mt in a monotone man
ner. By contrast, Zeman postulates the existence of eddy shocklets, which are 
principally responsible for the dilatation dissipation. His analysis predicts that a 
threshold exists below which dilatation dissipation is negligible. 
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Although their arguments seem plausible when taken at face value, the 
premises are flawed. Most importantly, both draw from early DNS results for 
low-Reynolds-number, initially-isotropic turbulence subjected to strong compres
sion or shear, where both dilatation dissipation and pressure-dilatation (see the 
next subsection) are significant. As pointed out by Ristorcelli et al . ( 1 995), 
dilatation fluctuations occur mainly in the large eddies, where density fluctua
tions are large and viscous effects are small. That is, the mean-square dilatation 
fluctuation is virtually independent of Reynolds number, so Ed varies as 1/ Re 
and is therefore small at real-life Reynolds numbers. 

DNS results for compressible thin shear layers [Coleman et al. ( 1 995) and 
Huang et al. ( 1 995) for channel flows, and Vreman et al. ( 1 996) for mixing layers] 
show that dilatation dissipation is small or negligible, even in the presence of 
eddy shocklets and even at the fairly low Reynolds numbers of recent DNS 
studies . The channel results are consistent with the fact that compressibility 
corrections are not needed for boundary-layer flows. These DNS results also 
show insignificant pressure dilatation (see next subsection). 

Nevertheless, the "dilatation-dissipation" corrections postulated by Zeman 
and Sarkar can, with adjustment of empirical coefficients, successfully correlate 
the decrease in mixing-layer growth rate with increasing Mach number. With 
care, they can also be arranged to have the desired lack of influence on non
hypersonic boundary layers, in which Mt is generally lower at given !vie because 
k/U; is smaller than in mixing layers. Evidently they should be regarded as 
completely empirical corrections rather than true models of dilatation dissipation. 
We return to the question of what these compressibility corrections really mean 
after discussing the other explicit compressibility terms in the turbulence kinetic 
energy equation, namely pressure diffusion and pressure dilatation. 

5.4.5 Pressure Diffusion and Pressure Dilatation 

Section 4. 1  discusses the lack of information regarding diffusion by pressure 
fluctuations in incompressible flows. So little is known that it is simply ignored; 
by implication, it is lumped in with triple-product turbulent transport. Even less is 
known for compressible flows. However, given the fundamentally different role 
that pressure plays in a compressible medium relative to its essentially passive 
role at low speeds, we might reasonably suspect that ignoring pressure diffusion 
and pressure dilatation might lead to significant error. However, DNS research 
shows that, as with dilatation dissipation, these terms are very small for both 
mixing layers and boundary layers. As in the case of dilatation dissipation, 
the early homogeneous-strain simulations were misleading. As Zeman ( 1 993) 
shows, pressure-dilatation is large in flows with a large ratio of turbulence
energy production to dissipation - typical of strongly-strained initially-isotropic 
flows. In thin shear layers, production and dissipation are roughly the same and 
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pressure-dilatation is small. (This is. not a Reynolds-number effect: pressure
dilatation is detennined by the large eddies, like mean-square dilatation, and 
does not involve viscosity.) Hence, models for these pressure tem1s, to the extent 
that they improve predictions, are ad hoc in nature and do not reflect the true 
physics of compressible turbulence. 

New proposals, especially for the pressure-dilatation mean product, have been 
made by many authors (Sarkar et al. ( 199 1 , 1 992), Zeman ( 199 1 , 1 993) and Ristor
celli et al. ( 1993, 1 995)], but none has received general acceptance. For example, 
Sarkar ( 1 992) proposes that the pressure dilatation can be approximated as 

(5 .66) 

where Mt is the turbulence Mach number defined in Equation (5.62). The 
closure coefficients a2 and a3 are given by 

and (5 .67) 

The model has been calibrated for a range of compressible-flow applications 
including the mixing layer and attached boundary layers (but apparently not with 
respect to DNS results for these flows). 

5.4.6 Pressure Work 

The pressure work term, u�' P,i (or u�' P,j + u'j P,i for stress-transport models), 
arises because the time average of u�' does not vanish. It is proportional to 
the density/velocity correlation p' u� , and illustrates how Favre averaging does 
not completely eliminate the need to know how these fluctuating properties are 
correlated. 

Wilcox and Alber ( 1972) posttllate an empirical model for this term that 
improves two-equation model predictions for hypersonic base flows. Oh ( 1974) 
proposes a closure approximation postulating existence of "eddy shocks" and 
accurately simulates compressible mixing layers with a one-equation turbulence 
model. Neither model is entirely satisfactory however as they both involve the 
mean velocity in a manner that violates Galilean invariance of the Navier-Stokes 
equation. 

More recently, Zeman ( 1993) and Ristorcelli ( 1 993) have argued that the time 
average of u�' for boundary layers behaves as 

t PE axj 
Although corroborating measurements to verify this model are essentially nonex
istent, we can at least say that it is dimensionally correct and does not violate 
Galilean invariance. 
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5.4. 7 k-w Model Equations for Compressible Flows 

To summarize the ramifications of the closure approximations discussed above, 
it is instructive at this point to combine them into a closed set of equations 
for compressible flows. Since many of the compressible-flow applications to 
follow will be done with the k-w model, we will focus on its equations. The 
Favre-averaged equations for conservation of mass, momentum, energy and the 
equations defining the k-w model are as follows. 

Mass Conservation: 

Momentum Conservation: 

a ( -- ) a ( - - _ ) 
at pui + ax . PUjUi 

J 

Energy Conservation: 

aP a _ 
l -

a + a [t1i + /5Tji Xi Xj 

a -
at P 

- - a 
+ -ax-· · J 

- -
- -

a 
-

ah 
-- +  ax · J 

Molecular and Reynolds-Stress Tensors: 

J.L + (J"* pk ak 
w axj 

X ·  J 

(5.69) 

(5.70) 

(5.7 1 )  

1 auk 8- . - - 8· . (5 .72) tJ 3 axk tJ 

Eddy Viscosity: 

pk J.lT = - ' w 
-w max w, Clim 

- -

Turbulence Kinetic Energy: 

_ afli * _ 
a = PTij a 

- /3 pkw + a 

Specific Dissipation Rate: 

Xj Xj 

a 
+ 

' 

pk 
J.L + (J" * 

:....___ 
w 

ax } 

ak 
ax · J 

(5.73) 

(5.74) 

(5.75) 
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Closure Coefficients: 

13  9 
/3* = 

100 ' 
1 a = -
2 '  

1 -
8 

(5.76) 

0, 
8 

/30 0 .0708, Prr = g ' (5.77) 

G'do , 

� 

1 + 85xw 
!{3 - 1 + 100 ' 

nijnjkski 
(/3*w)3 ' 

1 8um Sk · - - 8k · . t 2 8xm t (5.78) Xw 
There are a few subtle points worthy of mention regarding the precise form of 
these equations, which apply to both compressible and incompressible flows. 

• The energy conservation Equation (5 .71)  ensures conservation of total en
ergy, E p( e + � uiui + k ), which includes the kinetic energy of the 
turbulence. Consequently, the equation's diffusion tem1 includes explicit 
appearance of molecular and turbulent diffusion of k. 

• The turbulence kinetic energy Equation (5 .74) contains no special com
pressibility terms involving pressure work, diffusion or dilatation. 

• Although a dilatation-dissipation modification to the k equation improves 
compressible mixing-layer predictions (see Section 5 .5), the same modifi
cation has a detrimental effect on shock-separated flow predictions. Hence, 
it is omitted from the k equation for general applications. 

• The stress-limiter modification [Equation (5 .73)] uses the zero-trace ver-
. 

f h 
. . s- s 1 auk i" s ston o t e mean stram-rate tensor, v1z., ij ij - 3 axk Uij . orne 

turbulence-model researchers prefer the magnitude of the vorticity vector 
in place of (2Sii Sij ) 1 12 . Using the magnitude of the vorticity with 0.95 re
placing 7/8 is satisfactory for shock-separated flow predictions up to Mach 
3 (and possibly a bit higher) . However, numerical experimentation with 
this k-w model has shown that it has a detrimental effect on hypersonic 
shock-induced separation, some (but not all) attached boundary layers and 
some free shear flows (especially the mixing layer) . 

Th d 
. . 

d 
. 

h s� s 1 auk i" • e roun -Jet parameter, Xw, ts compute wtt ij ij - 2 axk Uij ' 
which, unlike the compressible strain-rate recommended by Papp and Dash -
(200 1 ), is Galilean invariant. This is necessary because using Ski or Ski 
yields undesired effects in two-dimensional compressible flows. 

• All of the closure coefficients in the compressible-flow version of the k-w 
model are identical to those appearing in the incompressible-flow version 
[see Equations (4.39) - (4.4 1 )] .  
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5.5 Mixing-Layer Compressibility Corrections 

The decrease in mixing-layer growth rate with increasing Mach number has 
been known for many years [e.g., Birch and Eggers ( 1 972)] . This decrease is 
not likely to be the result of density changes across the layer. We know from 
the measurements of Brown and Roshko ( 1 974) that low-speed mixing layers 
between flows of two different gases show only a moderate effect of density ratio. 
Most researchers believe no current turbulence model predicts the Mach-number 
dependence of spreading rate without an explicit compressibility correction. 

We have seen above that the explicit compressibility terms in the k equa
tion are small in practical cases. Also, empirical functions of turbulence Mach 
number, Mt, calibrated to reproduce compressibility effects in mixing layers, are 
liable to have unwanted effects on boundary layers. From this we can deduce 
two things. First, compressibility effects result from Mach-number dependence 
of the main terms in the equations, i.e., those which are present even in incom
pressible flow. Second, these effects appear mainly in the mixing layer, but are 
not entirely attributable to the typically higher Mt in mixing layers. 

There is now fairly conclusive evidence, both from simulations [e.g., Vreman 
et al. ( 1 996)] and experiment [e.g. , Clemens and Mungal (1 995)], that quasi-two
dimensional spanwise vortex rolls, which form the large-scale structure of low
speed mixing layers, become more three-dimensional as Mach number increases. 
This is in line with the Mach-number dependence of the most-unstable distur
bances in laminar mixing layers, which are vortex rolls with gradually-increasing 
sweepback. This "inflection-point" instability is essentially inviscid, capable of 
growing in the presence of viscosity, and may therefore be at least qualitatively 
relevant to the behavior of large structure in the presence of small-scale turbu
lence. 

It seems unlikely that laminar stability theory will lead directly to a quan
titative correlation for turbulent flow, which must therefore rest on empiricism. 
An important question not yet settled by experiment is whether the spreading 
rate reaches an asymptotic value at high Mach number, or continues to decrease 
indefinitely. Acoustic radiation from the turbulence, which in the past was oc
casionally biamed entirely for the observed compressibility effects, will certainly 
become an important mechanism of energy loss at very high Mach number and 
may therefore prevent an asymptotic state from being reached. 

The arguments above strongly suggest that compressibility effects manifest 
themselves in the pressure-strain "redistribution" term, llij , defined in Equa
tion (5 .44) and a major term appearing in the Reynolds-stress transport equation 
for Tij • Equation (5.43). Unless some of the smaller unknown terms on the 
right-hand side of Equation (5 .43) increase very greatly with Mach number, the 
empirical compressibility correction terms which are added to the turbulence 
equations are a substitute for compressibility factors on ITij . To date, most 
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compressibility corrections have been applied to the turbulence-energy equation, 
as used in two-equation models. In these models, the Tij equation is not treated 
explicitly, and corrections to IIij have not yet been explored. 

5.5.1 The Contpressibility Corrections 

As noted in Subsection 5 .4.4, focusing upon the k-E model, Sarkar et al. ( 1989) 
and Zeman ( 1 990) have devised particularly elegant models for the k equation that 
correct the deficiency for the compressible mixing layer. Although their physical 
arguments have since been shown to apply at best only to low-Reynolds-number, 
strained homogeneous flows (the subjects of early DNS studies), their models 
are nevertheless quite useful. Building upon the Sarkar/Zeman formulations, and 
upon dimensional analysis, Wilcox ( 1 992b) has postulated a similar model that 
enjoys an important advantage for wall-bounded flows. 

To implement the Sarkar or Zeman modification in the k-w model, we begin 
by making the formal change of variables given by Es (3*wk. This tells us that 

dw 15 
P dt = B*k 

Es dk -
k dt 

(5 .79) 
' 

Consequently, a compressibility term must appear in the w equation as well as 
in the k equation. Inspection of Equations (4.37) and (4.38) shows that the 
Sarkar/Zeman compressibility modifications correspond to letting closure coef
ficients (3 and (3* in the k-w model vary with Mt. In terms of .;* and the 
compressibility function F(Mt),  (3 and (3* become: 

(3* f37 [1 + C F(Mt) ]  , (5 .80) 

where f3i 9/100 and f3i {30/13 are the corresponding incompressible values 
of (3* and (3. The values of .;* and F(Mt ) for the three models are: 

Sarkar's Model2 

c = 1 , (5.8 1)  

Zeman's Model 

c 3/4, 

Wilcox's Model 

2When Sarkar's pressure-dilatation term, Equation (5.66), is used in combination with Equa
tion (5.8 1 ), the coefficient C should be reduced to 1/2.  

•• •• 
) ' . ' 

" 
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where 1 is the specific-heat ratio and 1t(x) is the Heaviside step function. 
Zeman recommends using A 0.60 and Mta 0. 10y'2j(T -1- 1 )  for free 
shear flows. For boundary layers, their values must increase to A 0.66 and 
Mta 0.25 y'2j(T -1- 1 ) .  Zeman uses a different set of closure coefficients 
for boundary layers because he postulates that they depend upon the kurtosis, 
u'4f (u'2)2 . The kurtosis is presumed to be different for free shear flows as 
compared to boundary layers. While this may be true, it is not much help for 
two-equation or stress-transport models since such models only compute double 
correlations and make closure approximations for triple correlations. Quadruple 
correlations such as u'4 are beyond the scope of these models. 
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Figure 5. 1 :  Computed and measured spreading rate for a compressible mixing 
layer: - - Unmodified k-w model; Wilcox, C 2; - - - Sarkar, C 1; 
· · · Zeman, C 3/4; o Measured [Barone et al. (2006)]. 

5.5.2 Applica 

To illustrate how well these models perform, we consider mixing of a supersonic 
stream and a quiescent fluid with constant total temperature. For simplicity, we 
present results only for the k-w model as k-E results are similar. The equations 
of motion have been transformed to similarity form for the farfield and integrated 
using Program MIXER (see Appendix C). Figure 5 . 1  compares computed and 
measured [see Barone et al. (2006)] spreading rate, �'. As in the incompressible 
case, spreading rate is defined as the difference between the values of y / x where 
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(U - U2)2 /(U1 - U2 )2 is 9/ 1 0  and 1 / 10. The quantity 8� is incompressible 
spreading rate and Me (U1 - U2)/(a1 + a2 ) is convective Mach number 
[Papamoschou and Roshko ( 1 988)] . The unmodified k-w model fails to predict 
a significant decrease in spreading rate as Mach number increases. By contrast, 
the Sarkar, Zeman and Wilcox modifications, all applied to the k-w model, yield 
close agreement between computed and measured spreading rates. 

We turn now to the adiabatic-wall flat-plate boundary layer. The equations 
of motion for the k-w model have been solved with Program E DDYBL (see 
Appendix C). Figure 5.2 compares the ratio of computed skin friction, Cf, to 
its incompressible-flow value, CJ0 , with a correlation of measured values for 
freestream Mach number between 0 and 5 .  In all computations, momentum
thickness Reynolds number is Reo 104. As shown, the unmodified model 
virtually duplicates measured skin friction. By contrast, the Sarkar compress
ibility modification yields a value for c 1 at Mach 5 that is 1 8% lower than the 
value computed with C 0. Using the Wilcox compressibility correction with 
C 2 and Mto 0 .25 yields virtually no difference in skin friction. 
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Figure 5.2: Computed and measured k-w model skin friction for a compressible 
flat-plate boundary layer: Wilcox with C 0 and C 2; - - - Sarkar, 
C 1; · · · Zeman, C 3/ 4; o Van Driest correlation. 

Using A 0. 60 and Mto 0 .10J2/ ('y + 1) in Zeman's model, computed 
c1 at Mach 5 is 1 5% smaller than the value obtained with the unmodified model. 
Increasing the values of A and Mto to 0.66 and 0.25J2/('Y + 1), respectively, 
eliminates this discrepancy. However, using this large a value for Mto for the 
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mixing layer results in larger-than-measured spreading rates, with differences in 
excess of 1 00% between computed and measured spreading rate for M1 > 2.5. 

These results make it clear that neither the Sarkar nor the Zeman compress
ibility term is completely satisfactory for both the mixing layer and boundary 
layers. The Wilcox model was formulated to resolve this dilemma. Making {3 
and {3* functions of Mt is a useful innovation, and is not the root cause of the 
problem. Rather, the postulated form of the function F(Mt) is the weak link. 

Inspection of turbulence Mach numbers in mixing layers and boundary layers 
shows that all we need is an alternative to the Sarkar and Zeman functional 
dependencies of Ed upon Mt . Table 5 . 1  shows why the Sarkar term improves 
predictions for the mixing layer. The unmodified k-w model predicts peak values 
of Mt in a mixing layer that are more than twice the values in a boundary layer 
for the same freestream Mach number. The Sarkar compressibility term reduces 
(Mt )rnax by about one third for the mixing layer when M= 2 2. Even with this 
much reduction, ( Mt )rnax for the mixing layer at a Mach number of 2 remains 
higher than the largest value of (Mt )max in the boundary layer all the way up 
to Mach 5 .  

Table 5 . 1 :  Maximum Turbulence .Mach Number, (Mt )max ·  

Boundary Layer Mixing Layer 
Moo c = 0 c = 1 c = 0 e* = 1 

0 0 0 0 0 
1 0.088 0.087 0.239 0.2 1 5  
2 0. 1 57 0. 1 5 1  0.4 1 7  0.3 1 3  
3 0.207 0. 1 92 0.532 0.352 
4 0.24 1 0.2 1 9  0.605 0.369 
5 0.267 0.238 0.653 0.379 

For Mach 1 ,  the Sarkar tenn reduces mixing-layer spreading rate below mea
sured values (Figure 5. 1 ). Zeman's term predicts a somewhat larger spread
ing rate at Mach 1 ,  mainly because of the Mach number threshold in Zeman's  
model . That is, Zeman postulates that the compressibiliiy effect is absent for 
Mt < Mt a ·  Zeman's Mach number threshold also yields smaller differences 
between computed and measured boundary-layer skin friction at lower Mach 
numbers (see Figure 5 .2). Inspection of Table 5 . 1  makes it very clear why set
ting the threshold at Mta 0.25 leaves boundary-layer properties unaffected by 
the dilatation-dissipation compressibility modification to the k-w model. These 
observations show that an improved compressibility term can be devised by ex
tending Zeman's  threshold Mach number to a larger value of Mt . The Wilcox 
model simply combines the relative simplicity of Sarkar's functional form for 
F(A1t) with Zeman' s  Mach number threshold to accomplish this end. 
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5.6 Compressible Law of the Wall 

In this section, we use perturbation methods to examine k-w and k-E model pre
dicted, compressible log-layer structure. The results are particularly illuminating 
and clearly demonstrate why the Sarkar and Zeman compressibility tetms ad
versely affect boundary-layer predictions. We will also show that the presence of 
a cross-diffusion tenn in the w equation distorts a model 's implied compressible 
law of the wall. 

5.6.1 Derivation 

Recall from Section 4.6. 1 that the log layer is the region sufficiently close to the 
solid boundary for neglect of convective terms and far enough distant for molec
ular diffusion terms to be dropped. As in the incompressible case, turbulence 
kinetic energy production and dissipation are nearly balanced, which means the 
stress limiter has no effect. Therefore, w w so that /-LT pk I w. Thus, the 
log-layer form of the equations for the k-w model simplify to the following. 

d 
(}' dy 

d 
/-LT d y 

du _ 2 /-LT - PwU dy T 

-
CpT 1 ') 

--=--- + -u� + a-* k 
Prr 2 = -qw 

* d 
(}' dy 

dk 
/LT dy 

du 2 
- {3* j5wk = 0 

dy 

dw 
/-LT dy 

j5 dk dw _ 
+ a-d d d 

+ ap w y y 

- -
j5T PwTw 

du 2 
- j3pw2 = 0 

dy 

(5.84) 

(5 . 85) 

(5.86) 

(5. 87) 

(5 .88) 

The quantity u-r is friction velocity defined as J T w I Pw where T w is surface -
shear stress and Pw is density at the surface. Also, T w is surface temperature, 
Qw is surface heat flux and cp is specific heat at constant pressure. Finally, y is 
distance from the surface. 

Since the flow is two dimensional, we have ff3 1 .  We introduce Sarkar's  
compressibility modification [Equation (5 .8 1 )] ,  so that Equation (5.80) for {3* 
and j3 simplifies to 

and (5 .89) 
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Following Saffinan and Wilcox ( 1 974), we change independent variables 
from y to u. Consequently, derivatives transform according to 

d du d _ 2 d 
Pr dy 

Pr dy dfi = PwUr du 

With this change of variables, we replace Equations (5 .85) - (5 .87) by 

-d CpT 1 -2 *k Qw 
du- p + -2u + O" 

-- - 2 Tr PwUr 

* d2k /3* p2k2 
0" d -2 + 1 - -2 4 = 0 

U PwUr 
d2w O"d dk dw w f3p2kw 

O" 
d -2 + k d- d- + a k 

- -2 4 = 0 
U U U PwUr 

(5 .90) 

(5.9 1 ) 

(5 .92) 

(5.93) 

Integrating Equation (5.9 1 )  yields the temperature, and hence the density, as a 
function of velocity and Mach number based on friction velocity, M r - Ur / aw. 

-
T Pw 2 1 
- = _ = 1 - ('-y - 1 )PrrM7 2 

Tw P 

Next, we assume a solution of the fonn: 

-u 

pk rpwu; 

-u k 
7t2 T 

(5.94) 

(5.95) 

where r is a constant to be determined. Substituting Equations (5 .94) and (5 .95) 
into Equation (5 .92), and noting that M? 2r M;., leads to the following quartic 
equation for r. 

As can easily be verified, when M;. « 1 the asymptotic solution for r is 

1 C + Cr;l) PrrCT* 
r = -� 

f3i 
-

f3i 

Finally, in terms of r, Equation (5.93) simplifies to 
2 

M2 + . . .  T 

0" d -2 + k d - d - + a 0 � T - 2 r  U U U �UT 
0 

(5 .96) 

(5 .97) 

(5 .98) 

Combining Equations (5 .94) and (5 .95) yields the density as a function of velocity 
and r. 

-
Pw 

-p 

1 - (r- l) Pr A12 
2 T T 

(5 .99) 
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Equation (5.99) assumes a more compact fonn if we introduce the freestream 
velocity, U = .  A bit more algebra yields 

where 

-
Pw -p 

A2 b - 1 )  Pr M2 (T jT ) 2 T (X) (X) W 

-
B -PrTqwUoo/ (cpTwTw ) 

(5 . 100) 

(5 . 1 0 1 )  

Using Equations (5 .97), (5 . 1 00) and (5. 1 0 1 ), and retaining terms up to O(M;),  
Equation (5.98) assumes the following form, 

dv 
0 (5 . 1 02) 

B - 2A2v dw - -

where the constant ""w is defined by 

1\.12 + . . .  
T 

(5. 1 03) 
and "' is Karman's  constant. Because Ucx_,/u7 » 1, we can use the WKB method 
[see Kevorkian and Cole ( 1 98 1 )  or Wilcox ( 1 995a)] to solve Equation (5 . 1 02). 
Noting that w decreases as il/U= increases, the asymptotic solution for w is 

[ 2 2 ] ( 1 - 2ad/a)/4 * w '"'-' Co 1 + Bv - A v exp [-K,wU fur] 

where Co is a constant of integration and u* is defined by 

u* 1 2A2v - B 
JB2 + 4A2 

(5 . 1 04) 

(5 . 1 05)  

The second sin- 1 term is needed to ensure u * 0 when v 0. Combining 
Equations (5 .84), (5 .95) and (5 . 1 04), we can relate velocity and distance, y. 

(5 . 1 06) 

We integrate by parts to generate the asymptotic expansion of the integral in 
Equation (5 . 1 06) as U=/ur --+ oo . Hence, 

(5 . 1 07) 
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Finally, we set the constant of integration Co ru;. I ( Kw vw) .  Taking the natural 
log of Equation (5 . 107), we conclude that 

u* 1 u y -- � Cn 7 + Cw (5 . 1 08) 

The quantity Cw is the effective "constant" in the law of the wall defined by 

1 p ( 1+2ud/u)/4 
C + Cn -=-

Kw Pw 

1 
C +  Cn 

Kw 

-p 3/8 
-
Pw 

(5. 1 09) 

where C is a true constant and we use the fact that ad 118 and a 1 12 .  
Most of the analysis above holds for the k-E model. The only significant 

difference is in the E equation which is as follows. 

- 1  d 
ae dy 0 (5 . 1 1 0) 

Equations (5 .95), (5 .97) and (5 . 1 00) are still valid for the turbulence kinetic 
energy and density, provided a* is replaced by a-,;1 • The transformed equation 
for E i s  . 

d2 f /'\,; (U 00 I UT )2 
----:::- -dv2 1 + Bv - A2v2 

where the constant "'€ is defined by 

0 (5 . 1 1 1 ) 

M2 + . . .  T 
(5 . 1 1 2) 

In arriving at Equation (5 . 1 1 2), recall from Equation (4. 1 33) that the k-E model 's  
closure coefficients are related by 

(5. 1 1 3) 

The asymptotic solution for E is 

(5 . 1 14) 

where C1 is a constant of integration. Velocity and distance from the surface are 
related by 

Consequently, Equation (5 . 1  07) is replaced by 

5/4 [1 + Bv - A2v2] exp ["'Eu* juT] � C2y 

(5. 1 1 5) 

(5. 1 1 6) 

' 
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where C2 is another constant of integration. Finally, the law of the wall for the 
k-E model is 

where c€ is given by 

u* 1 u y - rv .en T + c€ 
Ur Ke Vw 

-
p 5/4 

-
Pw 

(5 . 1 1 7) 

(5. 1 1 8) 

Equations (5 . 1 08) and (5 . 1 1 7) are very similar to the compressible law of the 
wall deduced by Van Driest ( 195 1 )  [cf. Equation (5 .4)] . There are two ways in 
which these equations differ from the Van Driest law. 

The first difference is the effective Karman constants, Kw and Ke, which 
vary with Mr according to Equation (5 . 1 03) for the k-w model and according to 
Equation (5 . 1 1 2) for the k-E model. In terms of each model's closure coefficients, 
Kw and Ke are given by (for "( 1 .4 and Mr « 1): 

and 

/'\,� rv K2 [ 1 - (41 . 33C + 1 .03) M; + · · ·] 

/'\,; rv /'\,2 [1 - (23.92f,* + 3.07) M; + • • ·] 

(5 . 1 1 9) 

(5 . 1 20) 

Table 5 .2 summarizes results obtained in the boundary-layer computations of 
Section 5 .5 for the unmodified k-w model (.;* - 0) and for the k-w model with 
the Sarkar compressibility term (.;* 1). The value of r.,w for the unmodified 
model deviates from its implied Karman constant, K 0.40, by less than 0.5% 
for freestream Mach numbers between 0 and 5. By contrast, when f,* 1 ,  the 
deviation is as much as 4%. This large a deviation in the effective Karman con
stant is consistent with the observed differences between computed and measured 
skin friction. Similarly, with Mr 0.05, Ke differs from its implied K by 0.4% 
and 3 .4% for .;* = 0 and 1 ,  respectively. Thus the Sarkar compressibility term 
has a somewhat smaller effect on K for the k-E model relative to the effect on "" 
for the k-w model. 

Table 5 .2 :  Effective Karman Constant/or the k-w Model. 

I l'vfoo MT I{*=O Kw MT IC=l Kw I 
0 0 0.400 0 0.400 
1 0.032 0.399 0.03 1 0.392 
2 0.048 0.399 0.046 0.382 
3 0.052 0.398 0.049 0.379 
4 0.050 0.398 0.046 0.382 
5 0.048 0.399 0.043 0.384 
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To see why a small perturbation in "" corresponds to a larger pet turbation in 
c1, differentiate the law of the wall with respect to ""· Noting that c1 �u�/U!,  
a little algebra shows that 

(5 . 1 2 1 )  

Thus, we should expect 6.cJI CJ to be double the value of 6.""/ ""· The numerical 
results indicate somewhat larger differences in c f, but the trend is clear. 
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Figure 5 .3 :  Computed and measured velocity profiles for compressible flat-plate 
boundary layers: Wilcox (2006) k-w; - - - Chien k-E; o Coles; o Watson. 

The second difference between Equations (5 . 1 08) and (5 . 1 1 7) and the Van 
Driest compressible law of the wall is in the effective variation of the "constants" 
Cw and C€ with (pj Pw ) . Because the exponent is only 3/8 for the k-w model, 
the effect is minor. By contrast, the exponent is 5/4 for the k-E model. This large 
an exp<ment has a much stronger effect on predicted boundary-layer properties. 
Figure 5 .3 compares computed and measured [Fernholz and Finley ( 1 98 1 )] ve
locity profiles for adiabatic-wall boundary layers at Mach numbers 4.5 and 1 0.3 .  
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Computed results are for the Wilcox (2006) k-w model and for Chien's ( 1982) 
low-Reynolds-number k-E model. Equations (5 . 1 08) and (5 . 1 1 7) are also shown 
to underscore the importance of each model 's variable "constant" in the com
pressible law of the wall. 

These results are consistent with the analysis of Huang, Bradshaw and Coak
ley ( 1 992), which shows how poorly the k-E model performs for compressible 
boundary layers. Since p / Pw > 1 for all but strongly cooled walls, compressibil
ity increases the model's "constant" in the law of the wall with a corresponding 
decrease in c f .  The Sarkar and Zeman tenns will thus amplify this inherent 
deficiency of the k-E model. 

5.6.2 The Effect of Cross Diffusion 

Recall that the E equation is equivalent to the w equation with a cross-diffusion 
coefficient CTd 2CT [see Equations (4. 1 0 1 )  and (4. 1 02)] . Thus, both the k-w 
and k-E models predict that the constant in the compressible law of the wall is 

1 
Cw = C + fn 

Kw 

-
p - (5 . 122) 

Pw 

which yields the exponent of 5/4 in Equation (5 . 1 1 8). Clearly, the presence of a 
cross-diffusion term in the w equation increases the value of Cw . 

To illustrate the impact of cross diffusion on compressible boundary-layer 
predictions, Table 5 .3  lists the exponent (1  + 2CTd/CT)/4 for several k-w models 
and the k-E model. With no cross-diffusion term, the Wilcox ( 1 988a) model has 
the smallest exponent of the models listed, and thus the smallest deviation from 
the compressible law of the wall. The newer Wilcox (2006) version increases 
the exponent from 1/4 to 3/8, which proves to be of no great consequence. The 
exponent is 3/4 for the model developed by Kok, which will cause nontrivial 
distortion. Hellsten 's (2005) k-w model and the k-E model feature values of 
1 . 1 93 and 5/4, respectively, which are totally unacceptable for Mach numbers in 
excess of about 3 .  

Table 5 .3 :  Exponent in the Compressible Law of the Wall "Constant ". 

Model ad ( 1  + 2ad/a)/4 I 
Wilcox ( 1 988a) 0 0.500 0.250 
Wilcox (2006) 0. 1 25 0.500 0.375 
Kok (2000) 0.500 0.500 0.750 
Hellsten (2005) 1 .000 0.530 1 . 1 93 
k-E 1 .538 0.769 1 .250 
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To put these results in proper perspective, don't lose sight of the fact that 
the k-E model requires the use of either wall functions or viscous damping func
tions in order to calculate wall-bounded flows. If these functions have an effect 
that persists well into the log layer as they do for Chien's model it may 
be possible to suppress the k-t: model 's inherent flaws at low Reynolds num
bers. However, the perturbation analysis above shows that such a model will 
not be asymptotically consistent with the compressible law . of the wall at high 
Reynolds numbers. In effect, such a model would have compensating errors that 
fortuitously yield reasonably close agreement with the law of the wall at low 
Reynolds numbers. 

Zhang et al. ( 1 993) provide an example of such compensating errors with 
their low-Reynolds-number k-t: model that yields close agreement with constant
pressure boundary layer data for Mach numbers up to 1 0. The model is based 
on the work of Coleman and Mansour ( 1 99 1  ), which shows that the exact Favre
averaged equation for solenoidal dissipation, t:8 ,  includes a term proportional to 
the rate of change of the kinematic viscosity, iJ, viz., 

_ dEs 
p dt 

PEs diJ 
iJ -d-t + . . .  

d - -
pv--:-dt -

1/ 
= . . .  (5. 1 23) 

This corresponds to an effective change of dependent variable in the t:8 equa--
tion. Assuming a power-law for viscosity, i.e., jl ex rn , the effective rescaled 
dependent variable would be p( l +n)€8 • Correspondingly, the exponent 5/4 in 
Equation (5 . 1 1 8) would become (n + 1/4). For a typical value n 7/ 10, the 
new coefficient would be 0.95 . Hence this term should yield only a slight im
provement in the model 's distorted law of the wall. Through a series of closure 
approximations, Zhang et al. combine this and other terms to arrive at a rescal
ing that effectively leads to using p-0·61t:8 • This corresponds to replacing the 
exponent 5/4 by - 1 .36, which would yield even more distortion. 

As a final comment, had we used pt: as the dependent variable in Equa
tion (5 . 1 1 0) instead of t:, the exponent 5/4 in Equation (5 . 1 1 8) would be reduced 
to 114. This change would improve k-t: model predictions for compressible 
boundary layers. The effect of this rescaling on the mixing layer is unclear. 

5. 7 Compressible Boundary Layers 

Most turbulence models are capable of providing reasonably accurate predictions 
for constant-pressure, adiabatic-wall boundary layers provided the Mach number 
does not exceed about 5. Similar to the incompressible situation, adverse pres
sure gradients continue to be anathema to the k-t: model, while presenting no 
major problem for the k-w model. When surface heat transfer is present, model 
predictions often show nontrivial discrepancies from measured values. 
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Algebraic models such as the Cebeci-Smith and Baldwin-Lomax models (see 
Subsections 3 .4. 1 and 3.4.2) require no special compressibility corrections. For 
the sake of clarity, recall that the Cebeci-Smith model uses the velocity thickness, 
8� , defined in Equation (3 . 1 1 5) for both compressible and incompressible flow. 
The velocity thickness differs from the displacement thickness, 8*, which is 
defined for compressible flows by 

00 

8* = 

0 

- -p 7.L 1 - ...;_. --- -Pe tLe 
dy (5 . 124) 

The primary reason algebraic models should fare well for compressible boundary 
layers without special compressibility modifications is illustrated by Maise and 
McDonald ( 1 967). Using the best experimental data of the time for compressible 
boundary layers, they inferred the mixing-length variation. Their analysis shows 
that for Mach numbers up to 5 :  

• Velocity profiles for adiabatic walls correlate with the incompressible pro
tile when the Van Driest ( 195 1) scaling is used, i .e., 

1 . 1 -- = - Sln-
U00 A 
u* 

, (5 . 1 25) 

• The Van Driest scaling fails to correlate compressible velocity profiles 
when surface heat transfer is present, especially for very cold surfaces. 

• The classical mixing length is independent of Mach number. 

Using singular-perturbation methods, Barnwell ( 1992) shows that algebraic 
models are consistent with the Maise-McDonald observations. Many researchers 
have applied the Cebeci-Smith model to compressible boundary layers, showing 
excellent agreement with measurements for adiabatic walls and somewhat larger 
differences when surface heat transfer is present. The Baldwin-Lomax model 
yields similar predictions. 

Because the length scale employed in most older k-equation oriented one
equation models is patterned after the mixing length, they should also be expected 
to apply to compressible flows without ad hoc compressibility modifications. 
This is indeed the case, especially for these and for newer models, which have 
been designed for compressible-flow applications. 

As we have seen in the last subsection, the issue is more complicated for 
two-equation turbulence models. The log-layer solution indicates that the length 
scale for the k-w and k-E models varies linearly with distance from the surface, 
independent of Mach number. The models even predict the Van Driest velocity 
scaling. Thus, two-equation models are consistent with two of the most important 
observations made by Maise and McDonald, at least in the log layer. 



�' ' 
.. ' • 

5. 7. COMPRESSIBLE BOUNDARY LAYERS 27 1 

However, we have also seen that the € equation includes a nonphysical den
sity effect that distorts the model ' s  log-layer structure [see Equations ( 5 . 1 1 7) 
and (5 . 1 1 8)], and precludes a satisfactory solution. By contrast, the w equa
tion is entirely consistent with the Maise-McDonald observations. As shown in 
Figures 5 .2 and 5 .3,  the k-w model provides good quantitative agreement with 
measurements for Mach numbers up to at least 1 0. 
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Figure 5.4: Comparison of computed and measured skin friction and velocity 
profile for a Mach 4, adiabatic-wall boundary layer with an adverse pressure 
gradient: Wilcox (2006) k-w model; - - - Chien k-£ model; o Zwarts. 

Turning to effects of pressure gradient, Figure 5 .4 compares computed and 
measured skin friction and velocity profiles a compressible boundary layer with 
adverse pressure gradient, corresponding to a Mach 4, adiabatic-wall experiment 
conducted by Zwarts [see Kline et al. ( 198 1 )  Flow 84 1 1 ] .  The figure includes 
computed results for the Wilcox (2006) k-w model without viscous corrections 
and for the Chien ( 1 982) k-E model. Neither computation has been done with a 
compressibility correction. As shown, k-w model skin friction is within 1 0% of 
measured c1 . Consistent with results shown in Figure 5.3(a), the k-E model 's skin 
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friction is 8% lower than measured at the beginning of the computation where the 
Mach number is 4. Because the flow is decelerating, the Mach number decreases 
with distance, falling to 3 by the end of the run. As a result, Pel Pw is only half 
its upstream value, and the corresponding distortion of the k-E model's log-layer 
velocity profile is greatly reduced. Consequently, the k-E model's  velocity profile 
is fortuitously in close agreement with the measured profile. 
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Figure 5.5 : Comparison of computed and measured flow properties for a Mach 
2. 65, heated-wall boundary layer with an adverse pressure gradient: Wilcox 
(2006) k-w model; - - - Chien k-E model; o Fernando and Smits. 

Figure 5 .5  presents a similar comparison for a Mach 2.65 boundary layer 
[Fernholz and Finley ( 198 1 )] with adverse pressure gradient and mild surface 
heating. The ratio of wall temperature to the adiabatic-wall temperature, Tw/Taw• 
varies between 1 .07 and 1 . 1 3  for the flow. Again, because the Mach number is 
in the low supersonic range, the density tenn in the k-E model's  law of the wall 
is small. The value of l\,-;1£n(p/ Pw )514 ranges between 0.50 at y+ 100 to 
1 .45 at y+ 5000. By comparison, the distortion in the k-w model's  law of the 
wall is less than a third of these values. 
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While k-E solutions for both of these adverse pressure gradient cases are 
nearly as close to measurements as k-w solutions, similar results should not be 
expected for higher Mach numbers. Many compressible-flow experiments have 
been conducted for Mach numbers of 3 and less. Far fewer experiments have been 
done at higher Mach numbers. Hence, these results show how a turbulence model 
calibrated for the best data available may not apply at higher Mach numbers. The 
k-E model 's  near-wall behavior has a significant impact on model predictions, 
and Chien's model happens to be optimum for these two flows. The Jones
Launder ( 1 972) and Launder-Sharma ( 1974) models, for example, predict skin 
friction values more than twice the measured values for both flows. 
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Figure 5.6 :  Computed and measured effects of surface cooling on skin friction 
for a iWuch 5 flat-plate boundary layer: k-w model, C 0; · · · k-w model, 
C 2; - - - Zhang et al. k-E model; o Van Driest correlation. 

Focusing now on effects of surface heat transfer, Figure 5 .6 compares com
puted skin friction with a correlation of measured values [see Kline et al . ( 1 98 1 )  
- Flow 820 1 ] .  The Wilcox (2006) k-w model is within 4% of the Van Driest 
correlation in the absence of compressibility modifications. Using the Wilcox 
compressibility modification, Equation (5.83), reduces predicted c f / c fo by up to 
1 5%. The k-E model predictions of Zhang et al. ( 1993) show a similar trend, 
with differences from measured values of less than 10%. 



274 CHAPTER 5. EFFECTS OF COMPRESSIBILITY 

As the final application, we consider compressible flow over roughened flat 
plates. Note that this provides a test of the Wilcox (2006) k-w model rough
surface boundary condition on flows for which it has not been calibrated. Fig
ure 5.7 compares computed skin friction with the data summarized by Reda, 
Ketter and Fan ( 1974). Computations have been done for Mach numbers of 0, 
2 and 5 and dimensionless roughness height, k"f", ranging from 0 to 1 00. For 
each Mach number, the values of Cf and the reference smooth-wall skin friction 
coefficient, c f o ,  correspond to a momentum-thickness Reynolds number, Reo, of 
104. As shown, computed skin friction falls within experimental data scatter for 
the entire range of roughness heights considered in the computations. 
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Figure 5.7: Computed and measured effects of surface roughness on skin friction 
for compressible flat-plate boundary layers. 

The computations also demonstrate consistency with the observation origi
nally made by Goddard ( 1 959) that "the effect of surface roughness on skin
friction drag is localized deep within the boundary layer at the surface itself and 
is independent of the external flow, i .e. ,  Mach number, per se, is eliminated as a 
variable." Consistent with Goddard's  observation, Mach number has little effect 
on predicted ctfcfo · Additionally, consistent with Reda's findings, computed 
skin friction departs noticeably from the smooth-wall value for k"f" values near 4 
to 5 as opposed to Goddard's  correlation which indicates no effect for k"f" < 10. 
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5.8 Shock-Induced Boundary-Layer Separation 

One of the most interesting and challenging CFD problems is the interaction of a 
turbulent boundary layer with a shock wave. In this section, we examine some of 
the earliest applications, illustrate the profound effect a stress limiter has on k-w 
model solutions for shock-separated flows, and discuss a series of applications 
ranging from transonic to hypersonic speeds. 

5.8.1 The Earliest Applications 

The earliest efforts were confined to algebraic models, largely because of the long 
computing times required to solve the full Favre-averaged continuity, Navier
Stokes and energy-conservation equations. The fastest computer of the late 
1 960 's  and early 1 970's was the CDC 7600, a machine that executed at about 
I /40th the speed of a 3-GHz Pentium-D microcomputer. Additionally, the best 
compressible-flow numerical algorithms of that era were explicit time-marching 
methods that required many thousands of timesteps to achieve a solution. 

Wilcox ( 1 974) obtained the first solutions to the Favre-averaged Navier
Stokes equation, using an advanced turbulence model, for shock-induced sep
aration of a turbulent boundary layer. This early CFD study included six com
putations, three for reflection of an oblique shock from a flat plate and three for 
flow into a compression comer. The study showed that a two-equation turbu
lence model could provide a reasonably accurate description of the flowfield for 
reflection of an oblique shock from a flat plate. Figure 5 .8  compares computed 
and measured pitot-pressure, pp, profiles throughout the interaction region. The 
quantity Ptoo is freestream total pressure, x is streamwise distance along the plate, 
x8 denotes separation-point location and 8 is incident boundary-layer thickness. 

Pv/Ptoo 
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6 -2 - I  I 2 0 3 4 5 

(x - Xs)/8 
Figure 5 .8 :  Computed and measured Pilot-pressure profiles for a Mach 3 shock
wave/boundary-layer interaction; Saffman-Wilcox k-w2 model; - - - com
puted separation-bubble dividing streamline; • Reda-Murphy (1972). [From 
Wilcox (1974) Copyright ©  AIAA 1974 Used with permission.} 
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However, the numerical flowfields for the three compression comers [Law 
( 1 973)] differ significantly from the experimentally observed flowfields, even 
though Mach and Reynolds numbers and shock strength are identical to those of 
the flat-plate shock/boundary-layer interaction cases. This is particularly evident 
from the surface-pressure variation. Figure 5.9 compares the computed and 
measured surface-pressure distributions for two of the shock-wave/boundary
layer interactions and two of the compression-·comer flows. 
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Figure 5 .9 :  Computed and measured surface-pressure for Mach 3 shock
wave/boundary-layer interactions and 26° compression-corner flows computed 
with the Saffman-Wilcox k-w2 model. [From Wilcox (1974) Copyright 
© AIAA 1974 Used with permission.] 

To put these computations in proper perspective, note that the turbulence 
model used was the Saffman-Wilcox (1 974) k-w2 model with surface boundary 
conditions given by matching to the law of the wall. The numerical algorithm 
used was a first-order accurate explicit time-marching procedure. The com
putations, which were done on 4000-point finite-difference grids and required 
about 10000 timesteps to achieve steady-state conditions, took 40 to 50 hours 
of UNNAC 1 108 computer time a commonly-used computer of that era that 
executed at about 1 /200th the speed of a 3-GHz Pentium-D microcomputer. 

Since that time, computational methods have improved dramatically thanks 
to the innovative work of many researchers such as Beam and Warming ( 1 976), 
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Steger and Wanning ( 1 979), Roe ( 1 9 8 1 ), Van Leer ( 1 982), MacCormack ( 1 985), 
and Roache and Salari ( 1 990), to name just a few. As a result of their innovations, 
converged solutions for separated flows can often be obtained in a few hundreds 
of timesteps or iterations. A two-equation turbulence model computation for 
a shock-separated flow using a 50000-point grid and 500 timesteps now takes 
about 1 5  minutes of 3-GHz Pentium-D microcomputer CPU time. 

While great advances have been made in developing accurate and efficient 
finite-difference algorithms, until recently, far less improvement was made with 
turbulence models for such flows. A veritable plethora of CFD researchers in
cluding Shang, Hankey and Law (1 976), Viegas and Horstman ( 1 979), Viegas, 
Rubesin and Horstman ( 1 985), Champney (1 989), Horstman ( 1 992), Huang and 
Liou ( 1 994), Liou and Huang ( 1996), Knight ( 1 997) and Forsythe (2000) pro
vides clear substantiation of this claim. They have applied many turbulence 
models to shock-separated flows with almost universal results, viz. : 

1 .  too little upstream influence, as shown by pressure starting to rise well 
downstream of the measured start of adverse pressure gradient; 

2. surface pressure in excess of measured values in the separation bubble; 

3 .  skin friction and heat transfer higher than measured downstream of reat
tachment; 

4. velocity profiles downstream of reattachment that indicate flow decelera
tion within the boundary layer in excess of corresponding measurements. 

On the one hand, using wall functions and the k-E model, Viegas, Horstman 
and Rubesin ( 1 985) are able to remove Item 3 from this list. On the other hand, 
they achieve only modest improvements in the other items. As we will see in this 
section, with the aid of a stress limiter, the k�w model removes Items 1 ,  2 and 
half of Item 3 (the skin friction) from the list. While its predictions are closer 
to measurements than most other models, it nevertheless displays the symptoms 
cited in Item 4, as well as excessive heat transfer downstream of reattachment. 
This slow track record of success on the compression-comer problem, which has 
persisted for more than three decades, is exceilent testimony to the oft quoted 
statement that . . .  

Turbulence modeling is the pacing item in CF D. 

5.8.2 The Use of Wall Functions for Shock-Separated Flows 

Most modern shock-separated computations are done without introducing wall 
functions. There is no evidence that the law of the wall holds in separated 
regions, and its use via wall functions is therefore a questionable approximation. 
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The primary motivation for using wall functions in large scale computations that 
require substantial computer resources is in reducing CPU time. 

Viegas, Horstman and Rubesin ( 1 985), in effect, create a two-layer turbu
lence model where their wall functions apply in the sublayer, and the Standard 
k-t: model applies above the sublayer. While their procedure yields significant 
reduction in computing time, numerical results are sensitive to the location of 
the grid point closest to the surface, y:J" . In fact, there is no obvious convergence 
to a well defined limiting value as y�· 0.  Consequently, the value of y:J" is 
effectively an adjustable parameter in their model equations, to be selected by the 
user. In practice, it is typical for the user to fix y2 at each location, rather than 
modify it locally as the solution develops, which would be required to achieve a 
constant value of y:J" . Thus, in practice, y:J" actually varies throughout the flow 
in a manner that cannot be determined a priori, so that the sensitivity to its value 
is a computational liability. 

The sensitivity can be removed by using petturbation methods to devise suit
able wall functions. Following Wilcox ( 1 989), for example, we can deduce 
the following compressible-flow wall functions for the k-w model as given in 
Equations (4.36) through (4.42): 

1 UrY u* = U7 -l!n + C - 1 . 13 UrY p+ + O (P+ )2 

-p 

w -
p 

rv Vw Vw 

1 - 0.30 UrY p+ + O(P+)2 
Vw 

where p+ is the dimensionless pressure-gradient parameter defined by 

+ Vw dP p = pu� dx 

(5 . 1 26) 

(5 . 1 27) 

As with the incompressible wall functions deduced for the k-w model (see Sub
section 4.7. 1 ), the expansions in Equation (5 . 1 26) have been derived assuming 
p+ is a small parameter. Using these wall functions, numerical solutions show 
very little sensitivity to placement of the grid point closest to the surface, provided 
it lies below y+ - 100. 

Shih et al. (1 999) and Nichols and Nelson (2004) have developed wall func
tions with attention focused on eliminating sensitivity to the location of y:J" . 
Consequently, they appear to provide satisfactory results. Nevertheless, keep in 
mind that there is virtually no evidence that the law of the wall, upon which wall 
functions are based, applies in separated regions. 
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5.8.3 Next Two Decades of "Progress" 

Efforts following the early work of Wilcox ( 1 974) yielded little progress in re
ducing discrepancies between theory and experiment. Figure 5 . 1 0  compares 
computed and measured [Settles, Vas and Bogdanoff ( 1 976)] surface pressure 
for Mach 3 flow into a 24° compression comer using algebraic models, a one
equation model and several two-equation models. None of the algebraic, one
equation or two-equation models provides a satisfactory solution. In more recent 
computations, Huang and Liou ( 1 994) show that the RNG k-E model [Yakhot 
and Orszag ( 1 986)] consistently predicts separation bubbles that are: (a) nearly 
double the length of those predicted by the standard version; and (b) much longer 
than measured. Also, Forsythe (2000) has shown that Menter's ( 1 992c) hybrid 
k-wlk-E model and the Spalart-Allmaras ( 1 992) one-equation model, both of 
which have proven to be reliable for incompressible and transonic applications, 
predict a separation bubble nearly double the measured size for this flow. 
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Figure 5 . 1 0: Comparison of computed and measured surface pressure for Mach 
3 flow into a 24° compression corner for several turbulence models. [From 
Marshall and Dolling (1992) Copyright ©  AIAA 1992 Used with permis
sion.] 
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5.8.4 Effect of the Stress Limiter on Shock-Separated Flows 

Coakley (1983) was the first to suggest that shock-separated flows can be more 
accurately simulated with the k-w model by simply limiting the magnitude of 
the Reynolds shear stress when production of turbulence kinetic energy exceeds 
its dissipation. He developed a stress limiter that showed some promise for 
improving k-w model predictions. Menter (1992c), Kandula and Wilcox (1995), 
Durbin (1996), and Huang (1999) for example, have subsequently confirmed the 
effectiveness of a stress limiter for flow speeds up to the transonic range. 

Durbin (1996) and Moore and Moore (1999) have assessed the realizability 
of turbulence-energy production predicted using the Boussinesq approximation. 
They observe that for flows such as impinging jets and the inviscid, highly
strained flow approaching a stagnation point, without the assistance of a stress 
limiter, the Boussinesq approximation leads to unrealistically high turbulence
energy levels levels that are not realized in nature. Moore and Moore propose 
the following general relation for limiting the Reynolds stress. 

pk /1T = - ' 
w 

-w max w, 

(5.128) - 1 Recall that Sij Sij - 3Skk8ij · Table 5.4 lists the values of the constants Co, 
Clim. A1 and >.2 proposed by several researchers. 

Table 5.4: Stre ss-Limiter C oefficie nts. 

I Reference � Coakley (I983) 0 1 .00 1 0 
Durbin (1996) 0 1 .03 1 0 
Menter ( 1 992c) 0 1.00 0 I 
Moore and Moore ( 1 999) 2.85 0.75 I I 
Wilcox (2006) 0 0.88 I 0 

To understand the way in which the stress limiter suppresses the magnitude 
of the Reynolds shear stress, we first simplify Equation (5.128) for the most-
commonly used version that has C0 0, >.1 1 and >.2 0, viz., 

/1T = pk 
- ' 
w 

(5.129) 

In a shear layer, we know that 2SijSij � (8uj8y) 2. So, Equation (5.129) tells 
us that 

au • pT xy = /1T &y 
= ffilll pk &ij_ c-1 

W 8y' lim (3* pk (5.130) 
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Also, observe that, in the absence of a stress limiter the ratio of production, Pk. 
to dissipation, Dk. in the turbulence kinetic energy 

'
equation is 

(i5k/w)au;ay 
{3*pkw = 

Thus, the stress-limiter modification is such that 

- c-1 PTxy = lim {3* pk for 

2 
(5.131) 

*W 

(5.132) 

Consequently, the stress limiter drives the Reynolds shear stress toward the foun 
Bradshaw implemented in his one-equation turbulence model (see Section 4.2). 
When Clim 1 ,  the coefficient C1-;,! * 0.30, which matches the value 
of Bradshaw's constant, f3r. For the Wilcox (2006) k-w model, we find that 

C1i,!1 {3* 0.34. 
Interestingly, in a shear layer the turbulence kinetic energy production term 

in the Saffman-Wilcox (1974) k-w2 model is Pk 0.30pk J8uf8yj. Hence, 
production of k is constrained although the eddy viscosity is not. This is the 

reason Wilcox and Traci (1974) were able to accurately compute the increase in 
turbulence kinetic energy approaching a stagnation point. This is not possible 
with a two-equation turbulence model that does not implement a stress limiter 
[Durbin (1996)] because the strain-rate field is such that Pk/ Dk is typically in 

excess of 100. Although experimental data are not shown in Figure 5.11, the 
computed amplification is consistent with the measurements of Bearman (1972). 
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Figure 5.11: V ar iation of tur bulence kinetic energy approaching a stagnation 
p oint; Saffman-Wilcox k-w2 model . [From Wilcox and Tr aci (1974) -
C opyr ight @ AIAA 1974 Used with p er mission.] 
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Figure 5.12 shows the dramatic improvement for Mach 0.8 flow past an 
NACA 0012 airfoil at 2.26° angle of attack. The solid curves identified as 
"original" correspond to the Wilcox (1988a) k-w model, which does not use a 
stress limiter. The dashed curves identified as "SST" correspond to the same 
model with a stress limiter applied with Clirn 1. The most dramatic dif
ference is the location of the shock. Without the stress-limiter, the predicted 
shock location is farther downstream than the measured location. Adding the 
stress limiter increases the size of the separation bubble on the upper surface 
of the airfoil, causing the computed shock location to lie much closer to the 
experimentally-observed location. 
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Figure 5.12: Compar ison of computed and measured surface pressure for tran
son ic flow past an NACA 0012 airfoil at 2.26° angle of attack. [From Kandula 
and Wilcox (1995) Copyr ight © AIAA 1995 Used w ith permission.} 

We saw in Chapter 4.10 that the stress limiter has a relatively small effect on 
most incompressible attached and separated flows. The most noteworthy counter 
example occurs for flow past a backward-facing step. Figure 4.49 shows that us

ing Ctim 1 yields a reattachment length that is 25% longer than measured. By 
contrast, using Ctirn 7/8 reduces the discrepancy to 13%. In Subsections 5.8.6 
and 5.8.7, we will discover that Ctirn has a similar effect on supersonic backsteps 

and flow into compression comers. 

We will also see that Menter's model predicts separation bubbles that are far 

larger than measured for Mach numbers in excess of 2. This occurs because 
the model uses Ctirn 1 .  We can reasonably conclude that Clirn 1 may be 

optimum for the transonic-flow regime, yields a somewhat stronger than desired 
stress-limiting effect for incompressible flows and yields much too strong an 
effect for supersonic flows. 
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5.8.5 Transonic Flow Over Axisy 

The transonic-bump experiment of Bachalo and Johnson (1979) is a particularly 
challenging separated-flow application. In the experiment, a long slender bump 
is fared onto the surface of a cylinder. Freestream Mach number isM= 0.875 
and unit Reynolds number is Re= 4 · 106 ft -l. A shock wave develops over 
the bump, which separates the boundary layer. The flow reattaches in the wake 
of the bump, giving rise to a reattachment shock. This flow is very difficult to 
predict because the bump surface pressure is extremely sensitive to the size of 
the separation bubble, which is strongly coupled to the precise shock locations. 
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Figure .5.13: Application of several tur bulence models to transonic flow past an 
axisymmetr ic bump: Wilcox (2006) k-w; - - - Wilcox (1988a) k-w; ···Menter 
(1992c) k-wlk-E;-- Spalar t-Allmaras (1992); o Bachalo and Johnson. 

Figure 5.13 compares computed and measured Cp for four turbulence models. 
The short-dashed curve corresponds to the Wilcox (1988a) k-w model, which 
does not have a stress limiter. Although the predicted separation-shock location 
differs from the measured location by only 6% of the bump's chord length, c, 
computed and measured Cp differ significantly. The solid curve corresponds 
to the Wilcox (2006) k-w model, which includes a stress limiter. Differences 
between computed and measured Cp are generally less than 7%. The long-dashed 
curve corresponds to the Spalart-Allmaras model. Although separation-shock 
location and separation are about the same as for the Wilcox (1988a) model, 
computed Cp is closer to measured Cp near reattachment. The dotted curve 
corresponds to Menter's (1992c) k-wlk-E model with a stress limiter. Computed 
and measured shock locations and Cp are quite close [see, e.g., Forsythe (2000)]. 
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Using Clim 1 with the Wilcox (200 6) k-w model yields Cp nearly identical 
to the Menter prediction. Unfortunately, the improvement in predictive accuracy 
for this flow comes at the expense of much greater discrepancies between theory 
and experiment for both smaller and larger Mach numbers. This explains why 
Menter's model fares well for Mach numbers from incompressible up to transonic 
speeds, but very poorly for supersonic and hypersonic flows. 3 Menter's model, 
in fact, appears to be fine tuned for the transonic regime. By accepting 7% 
discrepancies between predicted and measured properties for this flow, which 
are comparable to those obtained with the Spalart-Allmaras (1992) model, the 
Wilcox (200 6) k-w model reproduces measurements quite closely all the way 
from incompressible speeds to the hypersonic regime. 

The Wilcox (1988a) and (200 6) model computations were done using Pro
grams EDDYBL and EDDY2C (see Appendix C). Starting from the leading 
edge of the cylinder (x/c -3.5), EDDYBL was used to solve from laminar 
flow through transition and results were saved at x / c -3. Reynolds num
ber based on momentum thickness, Reo, at this point is 2450 . Output from 
EDDYBL was used to define upstream boundary conditions for a full Navier
Stokes solution using EDDY2C on a 20 1 x 10 1 finite-difference mesh. All of the 
EDDY2C computations in the following sections have been done in this manner. 

5.8.6 Mach 2 Flow Past a Backward-Facing Step 

We tum now to compressible flow past a backward-facing step. The case we 
will discuss has a freestream Mach number of 2.0 7  and the incident boundary 
layer has a momentum-thickness Reynolds number of Reo 1 .2 · 104• This 
flow was investigated experimentally by Samimy, Petrie and Addy ( 1 985). The 
computation was done with Program EDDY2C using the Wilcox (200 6) k-w 
model with and without the stress limiter. The finite-difference grid consists of 

40 1 streamwise points and 20 1 points normal to the freestream flow direction. 
As shown in Figure 5 . 14, with Clim 7/8, the stress limiter has a barely 

noticeable effect on the computed surface-pressure coefficient. Computed and 
measured values of Cp differ by less than 7% for the entire flowfield. Predicted 
reattachment length with the limiter is Xr 2.67 H. The length decreases to 
Xr 2.55H without the limiter. Both values are within a few percent of the value 
measured by Samimy et al., which is Xr 2.76H. Using Clim 1 for this flow 
increases Xr to 2.78H, which is also quite close to the measured reattachment 
length. Clearly, the effect is less pronounced than for an incompressible backstep. 

However, as we will see in the next subsection, with Ctim 1 the stress-limiter 
effect is a far too strong at Mach 3. 

3The primary culprit is not so much the stress-limiter strength, as reflected by the value of Ctim, 
as it is the Boussinesq approximation. We will explore this point in greater depth in Chapter 6. 
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Figure 5.14: Effect of the stress limiter on the k-w model for 11-f ach 2 flow past 
a backward-facing step: with limiter ; - - - without limiter ; o Samimy et a/. 

5.8.7 Mach 3 Compression Corners and Reflecting Shocks 

As discussed in Subsections 5.8.1 and 5.8.3, supersonic flow into a compression 
comer and reflection of an oblique shock from a flat surface have proven to be the 
most challenging of all two-dimensional separated-flow applications. Figure 5 . 1 5  
sketches these two geometries, including some of the main features of flow 
structure for each. While the geometries are fundamentally different, these flows 
are nevertheless very similar. Through extensive experimental investigations, 
Petrov et al. ( 1 952) and Chapman et al. ( 1 957) developed the free-interaction 
concept. They found that flow details in the vicinity of separation are local 
and depend almost entirely on Mach number and static-pressure ratio across the 
separation shock. Thus, if we test a turbulence model for compression-comer 
flows, we should simultaneously test the model for reflecting shocks to check 
consistency with the free-interaction concept. 
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Figure 5.1 5 :  Schematics of supersonic flow into a compression corner and shock
wave/ boundary-layer interaction (reflecting shock). 
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Figure 5 . 1 6  compares computed and measured surface pressure and skin 
friction for two compression-comer flows and a reflecting-shock case. All three 
flows have a freestream Mach number close to three and have separation bubbles 
of different sizes. The two compression-comer flows have wedge angles of 20° 
and 24 °, corresponding to experiments conducted by Settles, Vas and Bogdonoff 
( 1 976) and by Dolling and Murphy ( 1983). The reflecting-shock case was in
vestigated experimentally by Reda and Murphy ( 1 972) and by Murthy and Rose 
( 1 978). The incident shock makes an angle of 3 1 °  with the horizontal and turns 
the flow by 1 3°. All three computations were done with Program EDDY2C (see 
Appendix C) on finite-different grids with 401 streamwise points and 201 points 
normal to the surface. 

The graphs include results for the k-w model with and without the stress 
limiter. In all three cases, with the stress-limiter implemented, computed and 
measured surface pressures are very close. Most important, the initial pressure 
rise in the computed flowfields matches the measured rise. This means the 
separation shock is in the same location in the numerical and experimental flow
fields. The predicted pressure plateau in the separation bubble and skin friction 
downstream of reattachment are much closer to measurements than any of the 
results shown in Figure 5. 10. Discrepancies between computed and measured CJ 
downstream of reattachment indicates the rate of recovery from separation and 
the return to equilibrium conditions is a bit different. 

Without the stress limiter, the computed separation-shock location is clearly 
further downstream than measured, which distorts the entire flowfield. 

The similarity between the shapes of the computed surface-pressure and 
skin-friction curves for the shock-wave/boundary-layer interaction and the 24° 
compression-comer flow is striking. Because the overall pressure rise is nearly 
the same for the two flows, this similarity confirms that the k-w model 's predic
tions are consistent with the free-interaction concept. 

The numerical separation points for these flows are further upstream than 
indicated by oil-flow measurements. Marshall and Dolling ( 1 992) indicate that 
the flow includes a low-frequency oscillation of the separation shock. Adams 
(2000) has found this oscillation in a Direct Numerical Simulation of a Mach 3 
compression-comer flow. This phenomenon is also observed in three-dimensional 
shock-separated flows [Brusniak and Dolling ( 1 996)] . The time-mean pressure 
distribution upstream of the comer is affected by these oscillations, whose fre
quency content includes substantial energy at time scales of the mean motion. 
This unsteadiness is responsible for the apparent mismatch between the beginning 
of the pressure rise and the separation point. Since computations with the k-w 
model are so close to measured properties, yet display no low-frequency oscilla
tion of the shock, we can reasonably conclude that the computations effectively 
incorporate the slow oscillation into the Favre-averaged flow variables. 
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Figure 5 . 1 7 : Effect of the stress-limiter coefficient, Clim. on computed 
separation-point location for Mach 3 flow into a 24° compression corner. 

Figure 5 . 1 7  indicates how separation-point location, x8, for the 24° com
pression corner flow varies with Clim · As shown, similar to the effect for an 
incompressible backward-facing step (see Figure 4.49), -x8 increases monoton
ically as Clim increases. Selecting Clim 7/8 yields a value of X8 - 1 . 828, 

which provides a very close match to most details of this flowfield. Figure 5 . 1 8  
shows that using Ctim 1 produces a separation bubble roughly twice the 
measured size. This explains why Menter's model fares so poorly for this flow 
[Forsythe (2000)]. 
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friction for Mach 3 flow into a 24° compression corner: Menter (1992c) 
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5.8.8 Mach 11 Reflecting-Shock 

We turn now to a hypersonic flow, viz., the Mach 11 shock-wave/boundary
layer interaction investigated by Holden (1978). The incident shock makes a 
17.6° angle with the surface and increases the static pressure by a factor of 70. 
The surface is highly cooled with a wall to adiabatic-wall temperature ratio of 

Tw/Taw 0.2. All computations discussed below were done with Program 
EDDY2C on a 501 x 301 point finite-difference mesh. 
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Figure 5.19: Effect of the stress limiter and viscous modifications on the k-w 
model for a Mach 11 shock-wave/boundary-layer interaction: with limiter; 
- - - without limiter; · · · with viscous modifications; o Holden (1978) 

Figure 5.19 compares computed and measured surface pressure for three ver
sions of the Wilcox (2006) k-w model, viz., with the stress limiter, without the 
stress limiter and with low-Reynolds-number viscous modifications. As shown, 
the limiter increases separation bubble length from 0.3450 to 1.5350• The com
puted surface pressure rise is much closer to the measured rise when the limiter 
is used. As with the Mach 3 applications of the preceding subsection, this indi
cates that the predicted shock pattern closely matches the experimental pattern. 
Holden estimated the size of the separation bubble to be about 1.00£50• The 
surface-pressure data suggest a separation bubble about twice that size. 

The third computation shows the effect of the k-w model's viscous modifi
cations (Subsection 4.9.2). The low-Reynolds-number modifications make very 
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little difference for all of the shock-separated flows considered thus far. For this 
flow, the effect is more pronounced. The low-Reynolds-number model predicts 
a separation bubble with a length of 1.8180, an increase in length of 18%. As 
shown in the inset figure, this yields even closer agreement between theory and 
experiment throughout the region of reversed flow. 

5.8.9 e Reattachment Point Heat-Transfer Anomaly 

While significant progress has finally been made in predicting surface pressure, 
skin friction and velocity profiles in shock-separated flows, one problem contin
ues to defY accurate prediction. Specifically, surface heat transfer in the vicinity 
of reattachment predicted by all turbulence models is much higher than measured. 
To illustrate the problem, Figure 5.20 compares computed and measured surface 
pressure and heat transfer for Mach 7.05 flow into a 35° axisymmetric compres
sion comer [Kussoy and Horstman (1989)]. The surface is cooled and has a wall 
to adiabatic-wall temperature ratio of Tw /Taw 0. 4. Computed results shown 
are for the Wilcox (2006) k-w model with and without the stress limiter. The 
computation was done with Program EDDY2C on a 301 x 151 mesh. 

The graph to the right shows the ratio of surface heat transfer rate, qw, to its 
value far upstream of the interaction, qw=. Without the stress limiter, the peak 
heat transfer rate to the surface is double the measured value. Even with the stress 
limiter included, the peak heating rate is 50% higher than measured. Interestingly, 
increasing the strength of the stress limiter by using a larger value of Clim does 
two things. First, it increases the size of the separation bubble. Second, it 
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Figure 5.20: Computed and measured surface pressure and heat transfer for 
Mach 7 flow into a 35° axisymmetric compression corner (cylinder-flare geom
etry) us ing the Wilcox (2006) k-w model: with limiter; - - - without limiter; 
o Kussoy-Horstman (1989) 
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causes the ratio Qw / Qw00 to increase slightly. In fact, a series of computations 
varying Clim from 0 to 1 shows that the maximum value of Qw/Qw00 occurs 
when Clim 0, decreases to a minimum value of 1 .51  when Clim 0.8 and 
increases to 1.57 when Clim 1 .  

This is consistent with the fact that turbulent transfer of heat and momentum 
are fundamentally different processes. On the one hand, the largest eddies deter
mine the nature of the Reynolds stresses, which are responsible for the turbulent 
transport of momentum throughout a given flow. On the other hand, heat transfer 
occurs at much smaller scales and is less directly related to the large eddies. The 
stress-limiter primarily effects the Reynolds stresses well above the sub layer, i.e., 
it affects the larger eddies in a boundary layer. So, it is sensible that the stress 
limiter would increase the length of the separation bubble and simultaneously 
have a less pronounced effect on surface heat transfer. 

Coakley and Huang (1992) propose and test numerous compressibility mod
ifications, one of which is very effective in reducing predicted heating rates at 
the reattachment point for shock-separated flows. Specifically, they first define 
the so-called von Karman length scale, .ef..l, as follows. 

min (2.5y, k112 jw), k- w model 
min (2.5y, k312 /E) , k- E model 

(5.133) 

where y is distance nmmal to the surface. Then, the value of w or E is recomputed 
according to 

(5.134) 

This compressibility correction is very effective and yields realistic heating rates 
at reattachment for both k-w and k-E models. Figure 5.21 illustrates how well the 
modification works for the Kussoy-Horstman Mach 7 cylinder-flare experiment. 
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Figure 5.21: Computed and measured surface pressure and heat transfer for 
Mach 7 flow into a 35° a:'C isymmetric compression corner. [From Huang and 
Coakley (1993) Copyright © AIAA 1993 Used with permission.] 
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Results are shown for the Launder-Sharma ( 197 4) k-t: model and the Wilcox 
(1988a) k-w model. Without a heat-transfer correction, the Launder-Shanna 
model surface heat transfer, qw, is triple the measured value, while the k-w model 
is high by a factor of about two. The Coakley-Huang modification brings the 
computed heat transfer into much closer agreement with measurements. Note that 
the computed results in Figure 5.21 also include a compressibility modification 
that increases the length of the separation bubble. Like the stress-limiter, the same 
modification produces much too strong an effect for Mach 3 shock-separated 
flows [Coakley and Huang (1992)]. 

5.8.10 Three-Dimensional Applications 

There has been substantial progress in the capability for prediction of three
dimensional shock wave, turbulent boundary layer interactions. Recent reviews 
by Knight (1993, 1997, 2003) describe the status of research for five basic ge
ometries. Figure 5.22(a) illustrates the three-dimensional single fin, arguably the 
most extensively studied such interaction. The deflection of the fin surface by an 
angle a generates an oblique shock that interacts with the boundary layer on the 
flat plate. This interaction is of some practical interest, as it represents a geomet
ric abstraction of a fin-body juncture for a high-speed aircraft. Figure 5 .22(b) 
compares computed and measured surface pressure for Moo 2.9 , a 20°, and 
Re6o 9 · 105, where 80 is boundary-layer thickness upstream of the interac
tion. The comparison has been made at a spanwise distance, z 6.880 from the 
plane of symmetry. Computations using the Baldwin-Lomax (1978) model (la
beled "Knight") and Rodi's (1991) k-t: model (labeled "Horstman") are in close 
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Figure 5.22: Single-fin shock-wave/ boundary-layer interaction at Mach 2. 9 with 
a 20°. [Figure provided by D. D. Knight.] 
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agreement with measurements. Similar close agreement has been obtained with 
experimental data for pitot pressure and yaw angle [Knight et al. (1987)]. These 
results imply that the flowfield is predominantly rotational and inviscid, except 
within a thin region adjacent to the solid boundaries. This result is similar to 

the triple-deck theory developed for interacting boundary layers [e.g., Stewartson 
(1981)] and extended to non-separated three-dimensional shock wave, turbulent 
boundary layer interactions by Inger ( 1986). Consequently, the choice of turbu
lence model is unimportant for comparison with all but the inner (lower deck) 
provided the upstream boundary layer is correct. However, predicted skin friction 
and surface heat transfer are very sensitive to the turbulence model chosen, and 
can exhibit significant disagreement with experiment [Knight (1993)]. 
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Figure 5.23: Single-fin shock wave/ boundary layer interaction at Mach 4 with 
a 30.6°: Durbin (1996) k-w model; - - - Wilcox (1988a) k-w model; 
o Experiment. [Figure provided by D. D. Knight.] 

Figure 5.23 shows how the stress limiter affects k-w model predictions for a 
single-fin shock-wave/boundary-layer interaction. The Mach number is 4, the 
fin angle is 30.6° and Reynolds number just upstream of the interaction is 
Re00 1.6 · 105 . The dashed curve labeled "WI" corresponds to the Wilcox 
(1988a) k-w model, which has no stress limiter. Computed surface pressure is 
typically 40% higher than measured over the interaction region. The length of 
the region is about 10% shorter than measured. By contrast, using the Durbin 
(1996) k-w model (the solid curve labeled wn+), which is essentially the Wilcox 

(1988a) model with a Ctim 1.03 stress limiter, differences between computed 
and measured surface pressures are reduced to a few percent. However, the 
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length of the interaction region is nearly 20% longer than measured. This is 
similar to the effect of Clim on two-dimensional flows observed throughout Sec
tion 5.8. Using a smaller value such as Clim 7/8 would be likely to reduce 
discrepancies between computed and measured properties for this flow. 
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Figure 5.24: Double-fin shock wave/boundary layer interaction at Mach 8. 3 
with a 15°: Baldwin-Lomax model; - - - Rodi k-E model; o Experiment. 
[Figure provided by D. D. Knight.] 

Figure 5.24(a) shows the double-fin geometry. This geometry is of practical 
interest as it represents a geometric simplification of a hypersonic inlet using 
sidewall compression, or a sidewall interaction for a supersonic mixed compres
sion inlet. The two fins generate opposing shocks that intersect on the centerline, 
and interact with the boundary layers on the flat plate and fin. Figure 5 .24(b) 
compares computed [Narayanswami, Horstman and Knight (1993)] and mea
sured peak surface pressure (on the centerline) for Moo 8.3, a 15°, and 

Re8o 1. 7 · 105. The turbulence models are the Baldwin-Lomax ( 1978) model 
and the Rodi ( 1991) version of the k-E model. The predictions are reasonably 
close except at the peak near xfba 10. Baldwin-Lomax predictions are within 
about 20% of measurements, while k-E predictions differ by as much as 45%. It 

is interesting to note that the peak pressure is approximately half the theoretical 

in viscid level because of the viscous-in viscid interaction. Reasonable agreement 
is obtained between computed and measured pitot pressure and yaw-angle pro
files. Comparison of computed eddy viscosity shows significant differences, 
however. As a result, Knight concludes that, similar to the single-fin case, the 

fl ow is predominantly rotational and inviscid, except within a thin region near 

the surface. 
As with two-dimensional shock-wave/boundary-layer interactions, the turbu

lence model has a very significant effect on computed heat transfer. Figure 5.25 
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Figure 5 .25: Surface pressure and heat transfer on the throat middle line for a 
double-fin shock wave/ boundary layer interaction at Mach 4. [Figure provided 
by D. D. Knight.] 

compares computed and measured surface pressure and heat transfer along the 
centerline for a Mach 4 double-fin flow with o: 15°. The solid curve identi
fied as "WI" is the Wilcox (1988a) k-w model. While the computed pressure is 
arguably the best of the three curves shown, the surface heat transfer lies farthest 
from measurements. The maximum heat-transfer rate is double the measured 
value. The curves identified as "WM+" correspond to the Moore and Moore 
(1999) version of the k-w model with a stress limiter. As shown, the computed 
and measured surface heat-transfer differs significantly. 

5.9 Summary 

This chapter underscores the correctness of Morkovin's hypothesis that the ef
fect of density fluctuations on the turbulence is small provided they remain small 
relative to the mean density. This is especially obvious given the close agreement 
between computed and measured flow properties for shock-separated flows with 
the Wilcox (2006) k-w model using no special compressibility modifications. 

Favre averaging simplifies the basic conservation equations and helps avoid 
the need to model most of the correlations involving density fluctuations. The 
terms that require modeling, viz., dilatation dissipation, pressure diffusion, pres
sure dilatation and pressure work, have been modeled based on DNS studies. 
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Research has shown that these DNS studies feature Reynolds numbers that are 
small compared to those realized in practical engineering applications. All of 
these tetms appear to be negligible for Reynolds numbers of practical interest. 

The dilatation-dissipation compressibility correction has proven useful in de
scribing the reduced growth of a mixing layer as Mach number increases. How
ever, the term has an adverse effect on most other flows and cannot be used for 
general applications. 

Perturbation analysis demonstrates that the k-E model does not faithfully 
reproduce the compressible law of the wall, even for a constant-pressure boundary 
layer. This failure of the model means any compressible-flow computations based 
on k-E are highly suspect. By contrast, the k-w model faithfully reproduces the 
compressible law of the wall. 

Thanks to the stress-limiter concept, the Wilcox (2006) k-w model predicts 
reasonably close agreement with measured properties of shock-separated flows 
for transonic, supersonic and hypersonic regimes. While discrepancies can be 
reduced even further by increasing the strength of the limiter in specific cases 
(i.e., by increasing Clim:), choosing a:!'limiter strength of Clim 7/8 appears 

to be the optimum choice for covering the entire range of flow speeds from 
incompressible to hypersonic. The stress-limiter concept is generally ineffective 
for the k-E model. 

As originally formulated, the popular Spalart-Allmaras (1992) one-equation 
model and the Menter (1992c) k-wlk-E hybrid two-equation model are very in
accurate for supersonic and hypersonic flows. In the latter case, computations in 

this chapter show that the model fails for such flows because its stress limiter is 

too strong. 
Finally, all models predict much larger than measured heat-transfer rates at 

a reattachment point. While the model correction introduced by Coakley and 
Huang (1992) appears to be effective for two-dimensional and axisymmetric 
flows, it does not fare as well for three-dimensional applications. 
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Problems 

5.1 Derive the Reynolds-averaged momentum-conservation equation for compressible 
flow. 

5.2 Derive the Favre-averaged Reynolds-stress equation [Equation (5.43)]. 

5.3 Verify that Equations (5.58) and (5.59) are equivalent. 

5.4 The classical Crocco temperature-velocity relationship for an adiabatic-wall boundary 
layer is -

2 !_' =1-A2 u 
Tw Uoo 

where A is a constant. Use this approximation to evaluate the following integral. 

-
u 

* u = 
0 

Compare your result with Equation (5.125). 

p du Pw 

5.5 To use the WKB method in solving an equation such as 

d2w f'(v) dw .\2 
dv2 + e  f(v) dv - f(v) 

w = O, 

we assume a solution of the form 

w ( v) "" exp .\ 
n=O 

(a) Verify that So(v) and 81 (v) are given by 

So(v) = ± dv 
� = + constant 

f(v) 

S1(v) = fn lf(v)l(l-2�)/4 +constant 

00 

(b) Use the result of Part (a) to show that the leading-order solution to Equation (5. 1 02) 
is given by Equations (5.104) and (5.105). 

(c) Now, complete the derivation of Equation (5.107). 

5.6 Derive the compressible law of the wall implied by the Cebeci-Smith model. 

5.7 Using the compressible log-layer solution, show that the turbulence length scale for 

the k-w model defmed by f = k1/2 jw varies linearly with distance from the surface in 

the compressible log layer. 



298 CHAPTER 5. EFFECTS OF COMPRESSIBILITY 

5.8 Using the compressible log-layer solution, show that the turbulence length scale for 
the k-E model defmed by f = k312 IE varies linearly with distance from the surface in the 
compressible log layer. 

5.9 Coakley and Huang (1992) have developed a compressibility modification for two
equation turbulence models by observing that, under rapid distortion due to sudden flow 
compression or expansion, the equations for k and E assume the form 

and 

where c is a constant. If the turbulence length scale, l - k312 IE, is such that pl remains 
constant under a sudden compression or expansion, what is the value of c? 

5.10 For incompressible flow, Pope's vortex-stretching parameter is 

nijnjkski Xv = ({3*w)3 
For incompressible flows, this parameter vanishes in two-dimensional geometries. Verify 
that XP =/= 0 in a compressible, two-dimensional flow. 

5.11 The object of this problem is to deduce the jump condition on turbulence kinetic 
energy across a normal shock wave. For flow through a normal shock far from solid 
boundaries, the k-w model's equation for k is 

-- dk -
pu dx = pvT 

du 2 
* _ d 

dx -{3 pwk+ dx 
dk 
dx 

(a) Noting that the velocity has a step discontinuity and flow is uniform just ahead of 
and just behind the shock, explain why this equation simplifies to 

__ dk _ du 2 
pu dx � pvT dx 

(b) Show that, with a stress limiter, the jump condition for k across a nonnal shock is 

-P2 
-Pl 

(c) What is the maximum value of k2lk1 possible if the gas is air and Ctim = 7 18? 
5.12 Using Program MIXER and its menu-driven setup utility, Program MIXER_DATA 

(see Appendix C), compute 8' I 8� at Mach 5 for the k-w, k-E and RNG k-E models. That 

is, let the Mach number of the upper stream be M1 = 5, and let the lower stream be at 
rest. Do your computations using 1 0 1  grid points, and exercise the program for the Sarkar, 

Zeman and Wilcox compressibility corrections defined in Equations (5.81 ) through (5.83). 

5.13 The object of this problem is to compare predictions of modem turbulence models 

with measured properties of a Mach 2.65 turbulent boundary layer with adverse pres
sure gradient and surface heat transfer. The experiment to be simulated was conducted 

• 

. ·� 
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by Fernando and Smits. Use Program EDDYBL, its menu-driven setup utility, Program 

EDDYBL_))ATA, and the input data provided on the companion CD (see Appendix C). 

Do 3 computations using the k-w model, the Launder-Shanna k-f:. model and the Spalart
Allmaras one-equation model. Compare computed skin friction with the following mea

sured values. 

s 
. I 

I.l72 
1.197 
1.222 

. o-
9.96·10-4 

9.67·10-4 

9.43·10-4 

1.273 
1.299 
1.324 

·10-
9.41·10-4 

1.01·10-3 

1.D7·10-3 

1 
1.361 

1.08·10 
1.04·10-3 

5.14 The object of this problem is to compare predictions of modem turbulence models 
with measured properties of a Mach 2.2 flat-plate turbulent boundary lay er. The experi

ment to be simulated was conducted by Shutts. Use Program EDDYBL, its menu-driven 
setup utility, EDDYBL_))ATA, and the input data provided on the companion CD (see 
Appendix C). Do 3 computations using the k-w model, the Launder-Shanna k-f: model 

and the Spalart-Allmaras model. Compare computed velocity profiles with the following 
measured values. Also, compare to the measured skin friction at s = 3.02 ft, which is 

Cf = 0.00 1 62. 

I y+ u* fur y+ u* fur y+ u* fur 
6.1100·10 16.056 3 .3197·10 19.064 1.5200·10 24.527 
7.4670·101 I6.069 4.0052·102 I9.838 1.8607·103 25.544 
8.7570·101 16.030 4.6841·102 20.580 2 .1995·103 26.445 
1.1540·102 I6.030 5.7090·102 20.962 2 .8776·103 27.749 
1.4420·102 I6.030 6.7206·102 21.360 3 .5573·103 28.056 
1.826I·102 16.961 8.4I78·102 22.098 4 .2367·103 28.08I 
2.2402·102 I7.894 1.0115·103 22.764 4.9150·103 28.105 
2.7900·102 I9.2I8 1.1812·103 23 .423 

5.15 The object of this problem is to compare predictions of modem turbulence models 
with measured properties of a Mach 4.5 flat-plate turbulent boundary lay er. The experi
ment to be simulated was conducted by Coles. Use Program EDDYBL, its menu-driven 
setup utility, EDDYBL_))ATA, and the input data provided on the companion CD (see 
Appendix C). Do 3 computations using the k-w model, the Spalart-Allmaras model and 
the Baldwin-Lomax algebraic model. Compare computed velocity profiles with the fol

lowing measured values. Also, compare to the measured skin friction at s = 1 .90 ft, 
which is Cf = 0.00 1 26. 

I u* fur II I u* fur II I u* fur I I 
1.9650·1 1)2"::;::: I9 .893 I.4420·10T I 0.295 rr 5 .I570·10T 14.990 

1.7100·101 10.972 6.2450·101 15.472 2.3909·103 20.951 
2.03 80·101 11.713 7.5510·101 15.968 2.8953·103 21.951 
2.4440·101 12.456 9.1470·101 I6.559 3 .5196·103 22.523 
2.6230·101 I3.I82 1.1099·102 I7.258 4.2800·103 22.540 
3 .5590·101 I3.848 1.3466·102 18.052 

4.2930·101 14.465 1.6282·102 18.943 
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5.16 Compute Samimy's Mach 2.07 flow past a backward-facing step using the Baldwin
Lomax algebraic model. Use Program EDDY2C, its menu-driven setup utility, Program 
EDDY2C...DATA, and the input data provided on the companion CD (see Appendix C). 

(a) You must first run Program EDDYBL to establish flow properties at the upstream 
boundary. Modify the supplied input-data file eddybl.dat, using trial and error to 
adjust the "Maximum Arclength" (SSTOP) so that the Reynolds number based on 
momentum thickness is 1.20 . 104• 

(b) Modify the supplied input-data file eddy2c.dat for Program EDDY2C to run the 
computation 500 timesteps (NEND). 

(c) Make graphs of the "residual" and the value of the reattachment length, Xr/H, as 
functions of timestep number. 

(d) Compare the value of Xr / H predicted by the Baldwin-Lomax model relative to the 
measured value and the value predicted by the k-w model (see Subsection 5.8.6). 
Examine the surface-pressure graph provided by EDDY2C...DATA and comment 
on the quality of the solution relative to that of the k-w model. 

NOTE: This computation will take about 20 minutes of CPU time on a 3-GHz Pentium-D 
microcomputer. 

5.17 C ompute Settles' Mach 2.79 flow into a 20° compression comer using the k-w 
model with viscous modifications. Use Program EDDY2C, its menu-driven setup util
ity, Program EDDY2C...DATA, and the input data provided on the companion CD (see 
Appendix C). 

(a) You must first run Program EDDYBL to establish flow properties at the upstream 
boundary. After selecting the k-CJ..I model with viscous modifications, modify the 
supplied input-data file eddybl.dat, using trial and error to adjust the "Maximum 
Arclength" (SSTOP) so that the Reynolds number based on momentum thickness 
is 9.38 · 104. 

(b) Run EDDY2C and make graphs of the "residual" and the length of the separation 
bubble, (xr- Xa)/80, as functions of timestep number. 

(c) Compare the value of (xr- Xs)/8o predicted by the k-w model relative to the 

value predicted without viscous modifications, viz., (xr- xs)/8o = 1.16. 

NOTE: This computation will take about 45 minutes of CPU time on a 3-GHz Pentium-D 

microcomputer. 

5.18 Compute Settles' Mach 2.79 flow into a 20° compression comer using the k-w 
model with the Wilcox compressibility term. Use Program EDDY2C, its menu-driven 

setup utility, Program EDDY2C...DATA, and the input data provided on the companion 

CD (see Appendix C). 

(a) You must first run Program EDDYBL to establish flow properties at the upstream 
boundary. After selecting the Wilcox compressibility term, modify the supplied 

input-data file eddybl.dat, using trial and error to adjust the "Maximum Arclength" 

(SSTOP) so that the Reynolds number based on momentum thickness is 9.38 · 104 · 
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(b) Run Program EDDY2CJ)ATA and, in the "Numerics" menu, change the max
imum number of timesteps (NEND) to 2000. Run EDDY2C with the Wilcox 
compressibility tenn and make graphs of the "residual" and the length of the sep
aration bubble, (xr - x8)/oo, as functions of timestep number. 

(c) Compare the value of (xr - x8 )/6o predicted by the k-w model with the Wilcox 
compressibility tenn relative to the value predicted without the compressibility 
term, viz., (xr - xs)/oo = 1. 16. Examine the skin-friction and sutface-pressure 
graphs provided by EDDY2CJ)ATA and comment on the quality of the solution 
relative to that of the k-w model without the compressibility tenn. 

NOT E: This computation will take about 90 minutes of CPU time on a 3-GHz Pentium-D 
microcomputer. 
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OUSSIDeS I 

The Boussinesq eddy-viscosity approximation assumes that the principal axes of 
the Reynolds-stress tensor, Tij ,  are coincident with those of the mean strain-rate 
tensor, Sij , at all points in a turbulent flow. This is the analog of Stokes' pos
tulate for laminar flows. The coefficient of proportionality between Tij and sij 
is the eddy viscosity, vT .  Unlike the molecular viscosity which is a property 
of the fluid, the eddy viscosity depends upon many details of the flow under 
consideration. It is affected by the shape and nature (e.g., roughness height) of 
any solid boundaries, freestream turbulence intensity, and, perhaps most signif
icantly, flow-history effects. Flow-history effects on Tij often persist for long 
distances in a turbulent flow, thus casting doubt on the validity of a simple linear 
relationship between Tij and Sij , even for the primary shear stress. In this chap
ter, we examine several flows for which the Boussinesq approximation yields a 
completely unsatisfactory description. We then examine some of the remedies 
that have been proposed to provide more accurate predictions for such flows. 
Although our excursion into the realm beyond the Boussinesq approximation is 
brief, we will see how useful the analytical tools developed in preceding chapters 
are for

· 
even the most complicated turbulence models. 

6.1 Boussinesq-Approximatio Deficiencies 

While models based on the Boussinesq eddy-viscosity approximation provide 

excellent predictions for many flows of engineering interest, there are some ap
plicatiolls for which predicted flow properties differ greatly from corresponding 
measurements. Generally speaking, such models are inaccurate for flows with 

303 
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sudden changes in mean strain rate and for flows with what Bradshaw (1973a) 
refers to as extra rates of strain. It is not surprising that flows with sudden 

changes in mean strain rate pose a problem. The Reynolds stresses adjust to such 
changes at a rate unrelated to mean-flow processes and time scales, so that the 
Boussinesq approximation must fail. Similarly, when a flow experiences extra 
rates of strain caused by rapid dilatation, out of plane straining, or significant 
streamline curvature, all of which give rise to tmequal normal Reynolds stresses, 
the approximation again becomes suspect. Some of the most noteworthy types of 
applications for which models based on the Boussinesq approximation fail are: 

1. flows with sudden changes in mean strain rate; 

2. flow over curved surfaces; 

3. flow in ducts with secondary motions; 

4. flow in rotating fluids; 

5 .  three-dimensional flows. 

As an example of a flow with a sudden change in strain rate, consider the 
experiment of Tucker and Reynolds ( 1968). In this experiment, a nearly isotropic 
turbulent flow is subjected to uniform mean normal strain rate produced by the 
following mean velocity field: 

U constant, (6.1) 

The coefficient a is the constant strain rate. The strain rate is maintained for 
a finite distance in the x direction in the experiment and then removed. The 
turbulence becomes anisotropic as a result of the uniform straining, and grad
ually approaches isotropy downstream of the point where the straining ceases. 
Wilcox and Rubesin (1980) have applied their k-w2 eddy-viscosity model to this 
flow to demonstrate the deficiency of the Boussinesq approximation for flows in 
which mean strain rate abruptly changes. Figure 6.1 compares the computed and 

measured distortion parameter, K, defined by 

(6.2) 

As shown, when the strain rate is suddenly removed at x � 2.3 m, the model 
predicts an instantaneous return to isotropy, i.e., all normal Reynolds stresses 

become equal. By contrast, the turbulence approaches isotropy at a finite rate. 

Note also that the model predicts a discontinuous jump in K when the straining 
begins at x 0. Interestingly, if the computation is extended downstream of 

x 2.3  m without removing the strain rate, the model-predicted asymptotic 

' ' ' ',, 
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K 1 -- -- -- --------

.8 
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.4 

.2 

Figure 6. 1 :  Computed and measured d istortion parameter for the Tucker
Reynolds plane-strain flow: - k-w2 model; o • 6 Tucker-Reynolds. [From 
Wilcox and Rubesin (1980).} 

value of K matches the measured value at x 2.3 m, but approaches this value 
at a slower-than-measured rate. 

As an example of a flow with significant streamline curvature, consider flow 
over a curved surface. Meroney and Bradshaw (1 975), and later investigators, 
find that for both convex and concave walls, when the radius of curvature, R, 
is 1 00 times the local boundary-layer thickness, 6, skin friction differs from its 
corresponding plane-wall value by as much as 1 0%. By contrast, laminar skin 
friction changes by about 1 %  for 6 IR 0.01 .  Similar results have been obtained 
by Thomann ( 1 968) for supersonic boundary layers; for constant-pressure flow 
over surfaces with 6 IR "' 0.02, heat transfer changes by nearly 20%. Clearly, 
many practical aerodynamic surfaces are sufficiently curved to produce signif
icant curvature effects. For such flows, a reliable turbulence model must be 
capable of predicting effects of curvature on the turbulence. 

Standard two-equation turbulence models fail to predict any significant effect 
of streamline curvature. For an incompressible boundary layer on a surface with 
radius of curvature R, the k equation is 

au u 2 a 
- - - - E + 

ay R ay (6.3) 

The effects of curvature appear only in the production term, and have a negligible 
impact on model predictions, since ( u IR) I (au I ay) is somewhat less than 6 IR 
over rriost of the boundary layer. 
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5 

4 

3 

2 

1 

0 
1 2 3 4 

, , - - -- -

5 

- - - - -

x(ft) 6 

Figure 6.2: Computed and measured skin friction for flow over a convex sur
face with constant pressure, Wilcox (2006) k-w model : without curvature 
correction; - - - with curvature correction; o So and Mellor. 

For example, Figure 6.2 compares computed and measured skin friction for 
flow over a convex wall. The flow, experimentally investigated by So and Mellor 
( 1 972), has nearly constant pressure. The wall is planar up to x 4.375 ft and 
has 8 /'R "'"' 0.075 beyond that location. As shown, computed skin friction for 
the k-w model (the dashed curve) is as much as 40% higher than measured. 

Wilcox and Chambers ( 1 977) propose a curvature correction to the turbulence 
kinetic energy equation that provides an accurate prediction for flow over curved 
surfaces. Appealing to the classical stability arguments for flow over a curved 
wall advanced by von Ka1man ( 1 934), they postulate that the equation for k 
should more appropriately be thought of as the equation for v'2 • For flow over 
a curved surface, again with radius of curvature R, the equation for v'2 is 

av'2 av'2 U --:--;-
U + V - 2 u'v' = · · · 

ax ay R 
(6.4) 

The last term on the left-hand side of Equation (6.4) results from transforming to 
surface-aligned coordinates. 1 Approximating v'2 ;::::; � k and -u1 v' � vraU / ay, 
Wilcox and Chambers model this effect by adding a term to the k-w model's 
k equation. The boundary-layer form of the equations for flow over a curved 
surface is as follows. 

1 dP a 
- p  dx 

+ 
ay 

(v + Vr) 
au u 

(6.5) � - -
ay R 

1 The equation for u'2 has the same term with the opposite sign and the w'2 equation has no 
additional curvature-related term. Thus, when we contract the Reynolds-stress equation to form the 
k equation, no curvature-related term appears. 

. .. 
'\• . .  
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u
aw + v aw = a 
a:r ay 

au u 

au 
- -
ay 

- w + + -:--
w ay ay ay 

k 
v + a* 

w 

k 
v +  a

w 
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ak 
ay 
(6.6) 

aw 
ay 
(6.7) 

The last term on the left-hand side of Equation (6.6) is the Wilcox-Chambers 
curvature-correction teun. As shown in Figure 6.2, including the curvature term 
brings model predictions into much closer agreement with measurements. A 
perturbation analysis of Equations (6.5) to (6.7) for the log layer (see problems 
section) shows that the model predicts a modified law of the wall given by 

1 - {3 
y u 1 UTY 

- = -in + constant R 'D '" UT K, v (6.8) 

with f3R :::::::: 8.9 .  This is very similar to the modified law of the wall deduced by 
Meroney and Bradshaw ( 1975), who conclude from correlation of measurements 
that f3 R :::::::: 12.0. 

Other curvature corrections have been proposed for two-equation models. 
Lakshminarayana ( 1 986) and Patel and Sotiropoulos ( 1 997) present comprehen
sive overviews. Often, in the context of the k-E model, a correction term is added 
to the E equation. Launder, Priddin and Sharma ( 1977), for example, replace the 
coefficient C€2 [see Equation (4.48)] by 

where Rir is the turbulence Richardson number defined by 

2U Rir = 
R8Uj8y 

(6.9) 

(6. 1 0) 

This type of correction yields improved accuracy comparable to that obtained 
with the Wilcox-Chambers curvature correction. 

While two-equation model curvature-correction terms greatly improve pre
dictive accuracy for flow over curved walls, they are ad hoc modifications that 
cannot be generalized for arbitrary flows. The Wilcox-Chambers curvature term 
is introduced by making analogy to the full Reynolds-stress equation and by as
suming that k behaves more like v'2 than the turbulence kinetic energy for such 
flows . This implicitly assumes that a stress-transport model will naturally predict 
effects of streamline curvature. We will see in Section 6.3 that this can indeed 
be the case, at least for convex curvature. 
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These two applications alone are sufficient to serve as a warning that models 
based on the Boussinesq approximation will fail under some frequently encoun
tered flow conditions. Such models also fail to predict secondary motions that 
commonly occur in straight, non-circular ducts, and in the absence of ad hoc 
corrections, fail to predict salient features of rotating and stratified flows. While 
these are more subtle and specialized applications, each failure underscores the 
fact that models based on the Boussinesq approximation are not universal. The 
following sections explore some of the proposals made to remove many of these 
deficiencies in a less ad hoc fashion. 

6.2 Nonlinear Constitutive Relations 

One approach to achieving a more appropriate description of the Reynolds-stress 
tensor without introducing any additional differential equations is to assume the 
Boussinesq approximation is simply the leading term in a series expansion of 
functionals. Proceeding with this premise, numerous researchers have developed 
such relations with varying degrees of complexity. This section sketches some 
of the most important progress in developing nonlinear constitutive relations. 

6.2.1 The Earliest Formulations 

Lumley ( 1 970) and Saffman ( 1 976) show that for incompressible flow the ex
pansion must proceed through second order according to 

(6. 1 1 )  

where B, C, D, F and G are closure coefficients, and k/w2 may be equivalently 
written as k3 j E2 .  Also, Sij and nij are the mean strain-rate and rotation tensors, 

• 
VlZ., 

1 
-

2 
8U· 8U · 
-=--t + J 
axj axi 

and 1 n, . .  -- 
t] 2 

(6. 12) 

In order to guarantee that the trace of Tij is -2k, we must have B -C /3 
and F -G /3. Equation (6. 1 1 ) can be simplified by requiring it to conform 
with certain fundamental experimental observations. In the experiment of Tucker 
and Reynolds ( 1 968), for example, the normal Reynolds stresses are related 
approximately by 

(6. 13) 
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Substituting Equations (6. 1 )  and (6. 1 3) into Equation (6. 1 1 ) shows that neces
sarily C 0.  In addition, Ibbetson and Tritton ( 1 975) show that homogeneous 
turbulence in rigid body rotation decays without developing anisotropy. This ob
servation requires G 0. Finally, if Equation ( 6. 1 1 ) with C G 0 is applied 
to a classical shear layer where the only significant velocity gradient is au 1 ay, 
Equation (6. 1 3) again applies with Txx and Tz z interchanged, independent of the 
value of D. Thus, Saffman's general expansion simplifies to: 

2 k 
Tij - 3k0ij + 2vTSij -- D w2 (Siknkj + Sjknki) (6. 14) 

In analogy to this result, Wilcox and Rubesin ( 1 980) propose the following 
simplified nonlinear constitutive relation for their k-w2 model. 

2 1 8Uk r· · - - - ko · · -1- 2v S· · - - 8 ·  · ZJ - 3 tJ T ZJ 3 8X k 
ZJ + � k(Siknkj + sjknki) 

9 ((3* w2 + 2SmnSmn) 
(6. 1 5) 

The term 2SmnSmn in the denominator of the last tenn is needed to guarantee that 
1..1/2, v'2 and w'2 are always positive. The primary usefulness of this prescription 
for the Reynolds-stress tensor is in predicting the normal stresses. The coefficient 
8/9 is selected to guarantee 

(6. 1 6) 

for the flat-plate boundary layer. Equation (6. 1 6) is a good approximation 
throughout the log layer and much of the defect layer. The model faithfully 
predicts the ratio of the normal Reynolds stresses for boundary layers with ad
verse pressure gradient where the ratios are quite different from those given in 
Equation (6. 1 6) .  Bardina, Ferziger and Reynolds ( 1 983) have used an analog of 
this stress/strain-rate relationship in their Large Eddy Simulation studies. 

However, the model provides no improvement for flows over curved surfaces. 
Also, because the nonlinear term has no effect on Txy in a classical shear layer, it 
would require a stress-limiter correction [cf. Equation (4.36)] to provide accurate 
solutions for separated flows. 

Speziale ( 1 987b) proposes a nonlinear constitutive relation for the k-E model 
as follows (for incompressible flow): 

0 

where Sii is the frame-indifferent Oldroyd derivative of Sii defined by 

(6. 1 7) 

o asij u 
asij aui 8 auj 8 

(6. 1 8) Sij at 
+ k a 

- a kj -
a ki 

Xk Xk Xk 
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The closure coefficients C 0 and C E are given by 

(6. 1 9) 

Speziale's nonlinear constitutive relation satisfies three key criteria that assure 
consistency with properties of the exact Navier-Stokes equation. 

1 .  Like the Saffman and Wilcox-Rubesin models, it satisfies general coordi
nate and dimensional invariance. 

2. It satisfies a limited form of the Lumley ( 1 978) realizability constraints 
(i.e., positiveness of k - �Tii). 

3 .  It satisfies material-frame indifference in the limit of two-dimensional tur
bulence. The latter consideration leads to introduction of the Oldroyd 
derivative of Sij . 

The appearance of the rate of change of Sii in the constitutive relation is 
appropriate for a viscoelastic-like medium. While, to some degree, the Speziale 
constitutive relation includes rate effects, it still fails to describe the gradual 
adjustment of the Reynolds stresses following a sudden change in strain rate. 
For example, consider the Tucker-Reynolds flow discussed above. The Oldroyd 
derivative of sij is  given by 

0 

all other Sij 0 (6.20) 

When the strain rate is abruptly removed, a 0 and the Speziale model predicts 
that the normal Reynolds stresses instantaneously return to isotropy. Hence, the 
model is no more realistic than other eddy-viscosity models for such flows. 

For flow over a curved surface, the contribution of the nonlinear terms in the 
Speziale model to the shear stress is negligible. Consequently, this model, like 
the Wilcox-Rubesin model, offers no improvement over the Boussinesq approx
imation for curved-wall flows. 

While the Speziale model fails to improve model predictions for flows with 
sudden changes in strain rate and flows with curved streamlines, it does make a 
dramatic difference for flow through a rectangular duct [see Figure 6.3(a)] . For 
such a flow, the difference between Tzz and Tyy according to Speziale's relation 
is, to leading order, 

au 2 au 2 
-

az ay 

while, to the same order, the shear stresses are 

au Txy Vr ay , 
au Txz = Vr 
az , 

(6.2 1 )  

(6.22) 
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(a) Flow geometry (b) Secondary-flow streamlines 

Figure 6.3 : Fully developed turbulent flow in a rectangular duct. [From Speziale 
(1991) Published with the author 's permission.] 

Having a difference between Tzz and Tyy is critical in accurately simulating 
secondary motions of the second kind. i.e., stress-induced motions.2 Using his 
model, Speziale ( 1 987b) has computed flow through a rectangular duct. Fig
ure 6.3(b) shows computed secondary-flow streamlines, which clearly illustrates 
that there is an eight-vortex secondary-flow structure as seen in experiments. 
Using the Boussinesq approximation, no secondary flow develops, so that the 
Speziale model obviously does a better job of capturing this missing feature. 
Although Speziale presents no comparison of computed and measured results, 
the net effect of the nonlinear terms is very dramatic. 

Speziale' s  nonlinear constitutive relation also improves k-E model predictions 
for the backward-facing step. Focusing on the experiment of Kim, Kline and 
Johnston ( 1 980), Thangam and Speziale ( 1 992) have shown that using the non
linear model with a low-Reynolds-number k-E model increases predicted reat
tachment length for this flow from 6.3 step heights to 6.9 step heights. The 
measured length is 7.0 step heights. 

6.2.2 Algebraic Stress Models 

Rodi (1976) deduces a nonlinear constitutive equation by working with a model 
for the full Reynolds-stress equation [Equation (2.34)] . Rodi begins by approx
imating the convective and turbulent transport terms for incompressible flow as 

2 By contrast, secondary motions of the first kind, by definition, are pressure driven, and can be 
predicted by eddy-viscosity models. 
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proportional to the Reynolds-stress component considered, i.e., 

aT'ij 
U 

aT'ij 
at 

+ k axk 
a ak 1 

v + -2 C ·  ·k axk 33 (6.23) 

This approximation yields a nonlinear algebraic equation that can be used to 
detennine the Reynolds-stress tensor, viz., 

(6.24) 

With suitable closure approximations for the dissipation tensor, Eij, and the 
pressure-strain correlation tensor, ITij , Equation (6.24) defines a nonlinear con
stitutive relation. A model derived in this manner is known as an Algebraic 
Stress Model or, in abbreviated form, as an ASM. 

One of the most inconvenient features of the traditional ASM is the fact 
that it provides implicit equations for the several Reynolds stresses. Also, ex
perience has shown that such models have unpleasant mathematical behavior. 
Speziale ( 1997) explains how such models can have either multiple solutions or 
singularities, defects that can wreak havoc with any numerical solver. 

Gatski and Speziale ( 1 992) regard such models as strain-dependent general
izations of nonlinear constitutive relations, which can be solved explicitly to yield 
anisotropic eddy-viscosity models. That is, an ASM can be written in a form 
similar to Saffman's expansion [Equation (6. 1 1)] .  The various closure coeffi
cients then become functions of certain Reynolds-stress tensor invariants. Such 
explicit algebraic stress models bear the acronym EASM some authors prefer 
EARSM. The complexity of the constitutive relation depends on the closure ap
proximations, and alternative approximations have been tried by many researchers 
[see Lakshminarayana (1 986) or Speziale (1 997)] . Gatski and Speziale describe 
the methodology that can be used to deduce algebraic stress models. Building 
on the procedures pioneered by Pope ( 197 5), Gatski and Speziale argue that the 
Reynolds-stress tensor can be approximated by 

(6.25) 

where a1 , a2 and a3 are constants that depend upon the stress-transport model 
used. The quantities � and 17 are 

(6.26) 
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with the coefficients Ct;, and CTJ depending upon the ratio of production to dis
sipation. As it turns out, this explicit model, like implicit models, can exhibit 
singular behavior. Specifically, the Reynolds stresses can become infinite when 

(6.27) 

To remove this shortcoming, Gatski and Speziale (1992) regularize the relation
ship by using a Pade approximation [ct: Bender and Orszag (1978)] whereby 

(6.28) 

These two algebraic relations are nearly identical for turbulent flows that are 
close to equilibrium, i.e., for � and TJ less than 1 .  However, the right-hand side 
of Equation (6.28) remains finite for all values of c; and ry, which correspond to 
strongly nonequilibrium flows. Subsequently, Speziale and Xu ( 1 996) regularize 
the relationship for consistency with Rapid Distortion Theory.3 

When an ASM is used for a flow with zero mean strain rate, Equation (6.24) 
simplifies to 

k 
Tij = - (ITij - Eij ) 

f. 
(6.29) 

As we will discuss in Subsection 6.3 .1 ,  in the limit of vanishing mean strain 
rate, the most common closure approximations for Eij and IIij simplifY to 

and 2 
-tO· . 
3 t) (6.30) 

where C1 is a closure coefficient. Hence, when the mean strain rate vanishes, 
the algebraic stress model simplifies to 

2 
- - kb · .  

3 t) (6.31) 

This  shows that algebraic stress models predict an instantaneous return to 
isotropy in the Tucker-Reynolds flow discussed above. Hence, like the Wilcox
Rubesin and Speziale nonlinear constitutive relations, an ASM fails to properly 
account for sudden changes in the mean strain rate. 

Regarding secondary motions, the track record of algebraic stress models has 
been a bit erratic. On the one hand, So and Mellor ( 1978) develop an ASM 
that predicts most qualitative features and provides fair quantitative agreement 
for flows with secondary motions as shown, for example, by Demuren (1991). 
On the other hand, a recent study by Rung et al. (2000) cites shortcomings of 

3The usefulness of Equation (6.28) is questionable since, as � and "' become large, the denominator 
dominates and forces the Reynolds stress to zero, which will usually destabilize a computation. 
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ASM predictions for secondary motions. The primary difficulty originates in a 
closure-coefficient constraint that is not satisfied by many algebraic stress models. 

One of the most successful applications of the ASM has been to flows in 
which streamline curvature plays a significant role. So and Mellor ( 1 978) and 
Shur et al. (2000) show that excellent agreement between computed and measured 
flow properties is possible using an ASM for boundary layers on curved surfaces 
and for rotating channel flow. Jongen et al. ( 1998) have obtained reasonably 
good agreement between computed and measured properties for flow through a 
three--dimensional "S-duct," which is a duct with a curved-wall section. 

Another successful and particularly impressive application is for a 
multi-element wing section. Figure 6.4 shows the NHLP 2D airfoil, which has 
been analyzed by Hellsten (2005) using a k-w model and an EASM. Hellsten's 
computations were done for an angle of attack a 20. 18°, a Mach number of 
0. 1 97 and Reynolds number based on chord length of 3.52 · 106• 

' · ·. ·- . ;�:··.: . . -."; ' :,-· ·. '  _-,,/• ; .. ··· "_' :.' · ·/ -�< .,:· ;.-�- -' -, , -
- - - . ' ' ' " . -- ' . - . .  . . - - -. .  · . •  ,_. . i ,'''·'"··· ·> ' .. ' 

2 3 4 

c.
·. ·. ;- / • 

Figure 6.4: Geometry of the NHLP 2D airfoil with lines indicating the stations 
where total-pressure distributions have been measured. [From Hellsten (2005) 
- Copyright © AIAA 2005 Used with permission.] 

Table 6. 1 summarizes computed lift and drag coefficients as tabulated by 
Hellsten (2005) for three k-w models enhanced with an EASM. The table also 
includes results for the Wilcox ( 1 988a) k-w model without an EASM. Interest
ingly, while the three models that use an EASM predict a lift coefficient within 
I %  of the measured value, the Wilcox ( 1 988a) model without the aid of an 
EASM predicts a value of C L that is within 2% of the measured value. In 
two cases, this 1 %  reduction in difference between theory and experiment has 
been accomplished with a significant increase in the difference between com
puted and measured drag coefficient, C 0 .  While the k-w model without an 

Table 6. 1 :  Lift and Drag Coefficients for the NHLP 2D Airfoil. 

I Model I EASM I C L I Difference I Co I Difference I 
r Hellsten (2005) k-w Yes 4.06 - 1 .2% T 0.057 - 1 6.2% ., 

Menter ( 1 992c) k-w/k-E Yes 4.09 -0.5% 0.055 - 1 9. 1% 
Rumsey (1998) k-w Yes 4.08 -0.7% 0.068 0.0% 
Wilcox ( 1 988a) k-w No 4.01 -2.4% 0.07 1 4.4% 
Measured 4 . 1 1  0.068 
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EASM predicts a drag coefficient just 4% higher than measured, the values for 
the Hellsten (2005) and Menter ( 1 992c) models is 1 6% and 1 9% lower than 
measured, respectively. The computation by Rumsey et al. ( 1 998) does not trade 
a 1 %  improvement in C L for a double-digit-percent deterioration in C v .  

Figure 6.5 compares computed and measured total-pressure coefficient dis
tributions at the four points indicated in Figure 6.4. The solid curves labeled 
"New k-w + EARSM" correspond to the Hellsten (2005) model, while the dotted 
curves labeled "SST k-w" are for the Menter (1 992c) k-wlk-€ model .  Also, the 
dashed curves labeled "BSL k-w + EARSM" correspond to a variant of the orig
inal Menter hybrid model. The most significant point to be gleaned from these 
graphs is how well the turbulence models reflect the complexity of the flow. 

Station 1 

Station 3 

New k-c.> + EARSM 
8SL k-c.> + EARSM ·············-··--------------SST k-w ' ............................................... , ....... . 

o Experir rtent 

� 0.03 ---i---ii--

0.00 
-1.2 ' 0.0 
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0.14 :----f------ r-

� 0.08 --+----' 

1.2 

Station 2 

0.08 --+-----4--+ 

� 0.06 - ·  --+---+-+----
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0.0 0.3 0.6 1.2 

CPo 
0.24 Station 4 

0.16 f---+--+ 
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Figure 6.5 : Computed and measured total-pressure coefficients at the four sta
tions on the NHLP 2D airfoil depicted in Figure 6. 4. [From Hellsten (2005) -
Copyright © AIAA 2005 Used with permission.] 
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Increasing the Mach number to 3 ,  we find that algebraic stress model pre
dictions are just as unreliable as the Menter ( 1992c) hybrid k-w/k-E model (cf. 
Figure 5. 1 8) with a stress limiter. To demonstrate this point, Rizzetta ( 1 998) has 
performed computations with models using an ASM for two flows. The first 
is the Reda-Murphy ( 1 972) Mach 2.90 shock-wave/boundary-layer interaction. 
The second is the Kuntz et al. ( 1 987) Mach 2.94 flow into a 24° compression 
corner. Table 6.2 summarizes the six models tested by Rizzetta, three of which 
use an ASM and three that do not. 

Table 6.2: Designation of Turbulence Models in Rizzetta 's Computations. 

Jones-Launder ( 1 972) k-E 
Speziale-Abid (1995) k-E 
Gatski-Speziale ( 1996) k-E 
Shih-Zhu-Lumley (1995) k-E 

k-€ 

No 
No 
Yes 
Yes 
Yes 

JL 
SA 

GS-ARS 
SZL-ARS 
CLS-ARS 

Figure 6.6 compares computed and measured surface-pressure distributions 
for the two flows. Clearly, all three ASM models fail to yield a satisfactory 
solution for either flow. To some extent, this is a reflection of the models having 
the k-E model as their foundation. As shown in Section 5 .6, this model features 
a distorted law of the wall for compressible flows even for the simplest of all 

compressible, wall-bounded flows, viz., the constant-pressure boundary layer. 

. . 

; - m. ! - · - - � - - JL 
... . .... ;: SA •"<•--•••••no ••vi• ld 

�---: -::--::--:. . . 

(a) Shock-Wave/Boundary-Layer Interaction (b) 24 ° Compression Comer 

Figure 6.6:  Computed and measured surface pressure for several k-E model 
based turbulence models. · [From Rizzetta (1998) Copyright @ AIAA 1998 -

Used with permission.] 
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Just as a stress limiter does nothing to help correct the model's fundamental flaws 
for compressible flows, so whatever advantages the ASM offers are obscured by 
the shaky foundation provided by the k-E model. As we will see in the next 
subsection, with the possible exception of the Craft-Launder-Suga ASM, these 
models should be expected to produce reasonable separation-bubble size when a 
k-w model is used. 

In summary, the primary advantage of nonlinear constitutive relations ap
pears to be for flows with nontrivial streamline curvature and for predicting 
the anisotropy of the normal Reynolds stresses. Algebraic stress models yield 
greatly-improved prediction of flows with curved streamlines, both qualitatively 
and quantitatively. Although quantitative agreement with measurements is some
what less satisfactory, algebraic stress models are certainly applicable to flow in 
ducts with secondary motions of the second kind, which models based on the 
Boussinesq approximation are not. 

The nonlinear stress models discussed in this section have potential for im
proving computed results for separating and reattaching flows. However, while 
the improvements attending use of a nonlinear constitutive relation with two
equation models may be nontrivial, such relations cannot eliminate fundamental 
flaws in the model with which they are implemented. For example, in the case 
of an incompressible backward-facing step, while the k-E model 's predicted reat
tachment length is closer to the measured length when the Speziale, or any other, 
nonlinear model is used, it is not clear that a better description of the physics of 
this flow has been provided. After all, using the Boussinesq approximation, the 
k-w model [see Section 4 . 10] gives an excellent backstep solution. Rizzetta's 
study of shock-separated flows further reinforces the fact that the k-E model 
provides a greatly distorted mathematical representation of basic physical prop
ei1ies of turbulent flows that cannot be corrected with an ASM. By contrast, 
the excellent shock-separated flow predictions [see Section 5.8] obtained with 
the k-w model assisted only with a stress limiter strongly suggest that the k-E 
model's  inaccuracy for such flows has nothing to do with the basic eddy-viscosity 
assumption. 

6.2.3 Relation to the Stress Limiter 

The shock-induced separation computations discussed in the preceding subsec
tion reveal an interesting feature of algebraic stress models. In such flows, the 
dominant effect of the ASM is to limit the magnitude of the Reynolds shear 
stress. Huang ( 1 999) supplies the primary evidence supporting this claim. If we 
write the eddy viscosity in terms of k-E model variables, we have 

(6 .32) 
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Also, recall that the ratio of turbulence-energy production, Pk, to dissipation, 
Dk, in a thin shear layer is 

pk 
= J-LT(8Uj8y)2 

Dk pE 
JL 

E 
(6 .33) 

Huang has examined the three algebraic stress models tested by Rizzetta, viz., 
the models developed by Gatski and Speziale ( 1996), Shih, Zhu and Lumley 
( 1 995) and Craft, Launder and Suga (1996). Figure 6.7 shows the implied 

variation of CJL with C;,;1/2 yfPk/ Dk (8Uj8y)k/E for these three models 
[UMIST corresponds to the Craft-Launder-Suga model] along with the variation 
of CJL given by Menter' s  version of the stress limiter [denoted by SST]. Huang' s 
observations are consistent with the notion that the leading-order effect of an 
ASM is to limit the Reynolds shear stress in a manner similar to what the stress 
limiter does. 
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Figure 6.7: Effective variation ofCJL with the ratio ofturbulence-energy produc
tion to dissipation ratio. [From Huang (1999) Published with the author 's 
permission.] 

The stress limiter, in its essence, is an empirical correction to the Boussi
nesq approximation that greatly improves separated-flow predictions for the k-w 
model .4 Ideally, an ASM would add sufficient additional physics to improve 
upon the stress limiter. To get a glimpse into whether or not this is possible, it 
is convenient to recast our discussion in terms of k-w model variables. In a thin 
shear layer, the stress limiter is [see Equation (5.73)] 

J-LT = 
pk 

- ' w 
-w max w, 

Clim 8U 
* 8y 

4 As discussed in the previous subsection, it is ineffective for the k·E model. 

(6.34) 

. . " ·� ' '".1. 
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We can compute the effective value of clim as a function of c J1- and (au I 8y) k I € 

by noting that when the stress limiter is active ' 

pk pk 
ftT = - = -:;:;----;-;::�-;-;::--;--;---;::= w Clim(8UI8y)I.,J7J* 

v'lF pk2 
Clim (8UI8y)k 

Then, using Equation (6.32), we can solve for Clim• viz., 

Clim (8UI8y)k 

(6.35) 

(6.36) 

Figure 6.8 shows the implied variation of Clim with J Pkl Dk for the four models 
included in Figure 6. 7 and for the Wilcox (2006) k-w model. The implied Clim 
values suggest the following regarding the three algebraic stress models. 

• Since Cl·im almost always exceeds 1 .0 for the Craft-Launder-Suga ASM, 

it will normally yield separation bubbles at least as large as those of the 
Menter k-wlk-€ model. Rizzetta's computations confinn this since like 
Menter's model this ASM yields separation bubbles that are about 
double the measured size for Mach 3 shock-separated flows. 

• Since the asymptotic value of .Clim for- large Pkl Dk is smallest for the 
Gatski-Speziale ASM, its separation bubbles should be the smallest of the 
three for shock-separated flows. Rizzetta's computations confirm this also. 
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Figure 6 .8 :  Inferred stress-limiter strength, Ctim : Wilcox (2006) k-w; 
. . .  Menter; - - Craft-Launder-Suga; - - - Gatski-Speziale; - · - Shih-Zhu-Lumley. 
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We saw in Chapters 4 and 5 that selecting a value for the stress-limiter 
strength, Clim, equal to 1 works reasonably well for incompressible and tran
sonic flows, but yields separation bubbles that are typically twice the measured 
length for supersonic and hypersonic flows. By contrast, selecting Clim 7/8 
is a satisfactory compromise that yields acceptable separated-flow predictions 
from incompressible through hypersonic flow regimes. Nevertheless, numerical 
experimentation with the Wilcox (2006) k-w model reveals the following. 

• Using Clim 1 reduces discrepancies between computed and measured 
flow properties for axisymmetric flows, e.g., Figures 4.45, 5 . 1 3  and 5 .20. 

• Using Clim :::::: 0.95 reduces discrepancies between computed and measured 
flow properties for hypersonic flows. 

By design, the Wilcox (2006) k-w model can immediately accommodate 
an ASM in place of the stress limiter. This is true because its stress limiter 
has no impact on anything other than the Reynolds-stress tensor. For the same 
reason, it can serve, without modification as the foundation of a stress-transport 
model (Subsection 6.3.3). More research is needed to establish an algebraic 
stress model with sufficient generality to remove the limitations attending the 
otherwise successful stress limiter. 

6.2.4 Lag Model 

Olsen and Coakley (200 1)  have developed an interesting model that is reminiscent 
of the Shang and Hankey ( 1 975) and Hung ( 1 976) relaxation eddy viscosity 
models [see Equations (3 . 1 46) and (3 . 147)] . They postulate the following first
order equation for the kinematic eddy viscosity. 

k 
aw - vT 

w , (6.37) 

While this equation can be used in conjunction with any turbulence model, Olsen 
and Coakley have confined their applications to the Wilcox ( 1 988a) k-w model.5 

By introducing a lag between the "equilibrium" eddy viscosity, kjw, and the 
"non-equilibrium" value, vT, the lag model permits adjustments to flow condi
tions following a fluid particle. It is thus capable of accurately describing flows 
with sudden changes in mean strain rate, which an ASM cannot. Model ap
plications show that, similar to the stress limiter, it limits the magnitude of the 
Reynolds shear stress in strong adverse-pressure-gradient flows. 

5To improve model predictions near a turbulent/nonturbulent interface, the lag model increases the 
turbulence kinetic energy diffusion coefficient 0'* from 0.5 to 1 .5 .  The model is otherwise identical 
to the version presented by Wilcox ( 1988a). 
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Figure 6.9 compares computed and measured surface-pressure distributions 
for the Bachalo-Johnson ( 1979) transonic-bump experiments. The figure includes 
results for three freestream Mach numbers and four turbulence models, viz., the 
Lag model, the Wilcox ( l 988a) k-w model, the Menter ( 1 992c) k-wlk-E model 
and the Spalart-Allmaras one-equation model. For all three Mach numbers, the 
Lag model accurately predicts the location of the shock waves, and arguably 
provides the best overall agreement with measurements of the four models. 
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Figure 6.9: Computed and measured surface pressure for transonic flow over 
a bump: Olsen-Coakley (2002) Lag model; - · · · Wilcox (1988a) k-w 
model; - - - Menter (1992c) k-w/k-E model; · · · · · · Spalart-Allmaras (1992) 
one-equation model. [From Olsen and Coakley (2001) Published with the 
authors '  permission.] 

Olsen, Lillard and Coakley (2005) have tested the lag model for several 
high-speed flows including the Mach 7 cylinder-flare experiment of Kussoy and 
Horstman ( 1 989), an overexpanded nozzle and Mach 6 flow past the Space 
Shuttle Orbiter at a 40° angle of attack. In general, the lag model reduces 
discrepancies between predictions based on the Wilcox ( 1 988a) k-w model and 
predicts separation bubbles that are much closer to measured size than the Menter 
(1 992c) k-wlk-E model. Most important, the surface heating rates are reasonably 
close to measured rates both for the Kussoy-Horstman application and for the 

Space Shuttle Orbiter. 
While the results obtained to date are encouraging, soon-to-be-published ap

plications to shock-separated flows at Mach 3 indicate that the model 's predicted 
separation bubbles are significantly larger than measured. This indicates that fur
ther development and refinement of this promising approach are needed. 
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6.3 Stress-Transport Models 

Although posing a more formidable task with regard to establishing suitable clo
sure approximations, there are potential gains in universality that can be realized 
by devising a stress-transport model. In general turbulence-modeling literature, 
such models are often referred to as second-order closure or second-moment 
closure models. As we will see, stress-transport models naturally include effects 
of streamline curvature, sudden changes in strain rate, secondary motions, etc. 
We wil l  also see that there is a significant price to be paid in complexity and 
computational difficulty for these gains. 

Virtually all researchers use the same starting point for developing such a 
model, viz., the exact differential "transport" equation describing the behavior 
of the specific Reynolds-stress tensor, Tij -u�uj . Note that, as we have done 
throughout this book and consistent with common practice, we usually drop the 
term "specific" in referring to Tij . As shown in Chapter 2, the incompressible 
form of the exact equation is 

where 
pi 
p 

----:::-� 
au� 8uj 

Eij = 2v t --:--"-
8xk 8xk 

(6.38) 

(6.39) 

(6.40) 

C I I I + I I S: + I I S: (6 4 1  ) p ijk puiUjUk p UiUjk p UjUik · 

Inspection of Equation (6.38) shows why we can expect a stress-transport 
model to correct some of the Boussinesq approximation's shortcomings. First, 
since the equation automatically accounts for the convection and diffusion of 

Tij , a stress-transport model will include effects of flow history. The dissipa
tion and turbulent-tra•1sport terms indicate the presence of time scales unrelated 
to mean-flow time scales, so history effects shou ld be more realistically rep
resented than with a two-equation model . Second, Equation (6.38) contains 
convection, production and (optionally) body-force terms that respond automati
cally to effects such as streamline curvature, system rotation and stratification, at 
least qualitatively. Thus, there is potential for naturally representing such effects 
with a well-formulated stress-transport model. Third, Equation (6.38) gives no 
a priori reason for the normal stresses to be equal even when the mean strain 
rate vanishes. Rather, their values will depend upon initial conditions and other 
flow processes, so that the model should behave properly for flows with sudden 
changes in strain rate. 
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Chou ( 1 945) and Rotta ( 1 95 1 )  were the first to accomplish closure of the 
Reynolds-stress equation, although they did not cany out numerical computa
tions. Many researchers have made important contributions since their pioneering 
efforts. Two of the most important conceptual contributions have been made by 
Donaldson and Lumley. Donaldson [cf. Donaldson and Rosenbaum ( 1 968)] was 
the first to advocate the concept of invariant modeling, i.e., establishing closure 
approximations that rigorously satisfy coordinate invariance. Lumley (1 978) has 
tried to develop a systematic procedure for representing closure approximations 
that guarantees realizability, i .e., that all physically positive-definite turbulence 
properties be computationally positive definite and that all computed correlation 
coefficients lie between ±1.  However, while being generally supportive of the 
concepts involved, Speziale, Abid and Durbin ( 1 994) have cast doubt on some 
aspects of the Lumley approach. 

6.3.1 Closure Approximations 

To close Equation (6.38), we must model the dissipation tensor, Eij , the turbulent
transport tensor, Cij k. and the pressure-strain correlation tensor, IIij . Because 
each of these terms is a tensor, the approximations required for closure may be 
much more elaborate than the approximations used for the simpler scalar and 
vector terms in the k equation. In this subsection, we will discuss some of the 
most commonly used closure approximations. 

Dissipation: Because dissipation occurs at the smallest scales, most modelers 
use the Kolmogorov ( 1 941)  hypothesis of local isotropy, which implies 

where 

E 
av/. au' v t t 
axk axk 

(6.42) 

(6.43) 

The scalar quantity E is the dissipation rate appearing in the turbulence kinetic 
energy equation of standard two-equation models. This becomes evident upon 
contracting Equation (6.38) to form an equation for k - �Tii ·  As with simpler 
models, we must establish a procedure for determining E. In most of his work, 
for example, Donaldson specified E algebraically, similar to what is done with a 
one-equation model. 

As a final observation, most researchers use the E equation as formulated for 
the k-� model. Wilcox and Rubesin ( 1 980), Wilcox ( 1988b) and Wilcox ( 1 998) 
compute E by using an equation for the specific dissipation rate, w. 
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Since dissipation is in reality anisotropic, particularly close to solid bound
aries, efforts have been made to model this effect. Generalizing a low-Reynolds
number proposal of Rotta ( 1 95 1 ), Hanjalic and Launder ( 1 976) write6 

2 Eij 3E6ij + 2I8Ebij (6.44) 

where bii is the dimensionless Reynolds-stress anisotropy tensor, viz. ,  

(6.45) 

Also, Is is a low-Reynolds-number damping function, which they choose empir-
ically to vary with turbulence Reynolds number, ReT k2 I ( w ) , as 

- 1 
Is (6.46) 

Thrbulent Transport: As with the turbulence kinetic energy equation, pres
sure fluctuations, as well as triple products of velocity fluctuations, appear in the 
tensor Cijk·  Pressure fluctuations within the fluid cannot be measured with any 
assurance of accuracy, so there are no experimental data to provide any guid
ance for modeling the pressure-correlation terms. Currently-available DNS data 
seem to support neglecting pressure fluctuations. Traditionally, they are effec
tively ignored. The most common approach used in modeling Ciik is to assume 
a gradient-transport process. Daly and Harlow ( 1 970), argue that the simplest 
tensor of rank three that can be obtained from the second-order correlation rij is 

8rii I 8xk. and make the following approximation. 

(6.47) 

This form, although mathematically simple, is inconsistent with the fact that Cijk 
is symmetric in all three of its indices, i.e., it is rotationally invariant [provided 
pressure fluctuations are neglected - see Equation (6.4 1 )] .  

To properly reproduce the symmetry of Cijk, Donaldson (1 972) postulates 

(6.48) 

This tensor has the proper syrmnetry, but is not dimensionally correct. We require 
a factor whose dimensions are length2/time a gradient diffusivity and the 
ratio of k2 IE has been employed by Mellor and Herring (1 973) and Launder, 

6Note that bii = 0 and Oii = 3 so that Equation (6.44), like Equation (6.42), gives €ii = 2t:. 
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Reece and Rodi ( 1975). Using the notation of Launder et al., the final form of 
the closure approximation is 

(6.49) 

where Cs :;::;j 0. 1 1  is a scalar closure coefficient. 
Launder, Reece and Rodi also postulate a more general form based on analysis 

of the transport equation for Cijk ·  Through a series of heuristic arf,JUments, they 
infer the following alternative closure approximation: 

(6.50) 

where C� :;::;j 0 .25 is also a scalar closure coefficient. Note that optimizing C8 and 
c; implies that any pressure diffusion is combined with triple-product diffusion. 

Pressure-Strain Correlation: The tensor IIij defined in Equation (6.39), 
which is often referred to as the pressure-strain redistribution tenn, has re-. . 

ceived the greatest amount of attention from turbulence modelers. The reason 
for this interest is twofold. First, being of the same order as production, the 
term plays a critical role in most flows of engineering interest. Second, because 
it involves essentially unmeasurable correlations, a great degree of ingenuity is 
required to establish a rational closure approximation. 

To detetmine pressure fluctuations in an incompressible flow we must, in 
principle, solve the following Poisson equation for p'. 

' ' ' ' U ·U · -- U ·U ·  � J z J (6.5 1 )  

This equation follows from taking the divergence of the Navier-Stokes equation, 
using the continuity equation and subtracting the time-averaged equation from 
the instantaneous equation. 

As an aside, note that in a compressible flow, these operations lead to a 
transport equation for the divergence of u� , viz., 8uU8xi. Equation (6.5 1 ), 
depending upon 8uU 8xi 0, is a degenerate case. This is consistent with the 
fact that pressure signals travel through a fluid at the speed of sound, which 
is infinite for Mach number approaching zero. Hence, we should expect the 
fluctuating pressure to be governed by an elliptic equation such as Equation ( 6.5 1 )  
for incompressible flow. By contrast, pressure signals travel at finite speed in a 
compressible flow. Thus, we should expect the pressure fluctuations to satisfy 
a transport equation, which is typically hyperbolic in nature, for compressible 
flows. 
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The classical approach to solving Equation (6.5 1 )  is to write p' as the sum 
of two contributions, viz., 

p' 
= P�low + P�apid (6.52) 

By constmction, the slow and rapid pressure fluctuations satisfy the following 
equations. 

1 2 ' p \7 Pslow 

1 2 ' p\7 Prapid 
8U.· 8u'. -2 t J 
8xi 8xi 

(6.53) 

(6 .54) 

The general notion implied by the nomenclature is that changes in the mean 
strain rate contribute immediately to P�apid because the mean velocity gradient 
appears explicitly in Equation (6.54). By contrast, such effects are implicitly 
represented in Equation (6.53). The terminology slow and rapid should not be 
taken too literally, however, since in real-life flows the mean strain rate does not 
necessarily change more rapidly than u�uj . 

For homogeneous turbulence, these equations can be solved in terms of ap
propriate Green's functions, and the resulting form of Ilij is 

. (6.55) 

where Aij is the slow pressure strain and the tensor Mijkl8Uk/8x1 is the rapid 
pressure strain. The tensors Aij and Mijkl are given by the following. 

8 ' au'· u .  t + J 
8xi 8xi 

82 (u�uD d3y 
8yk8Yl lx - Y l  

8u' 8u'. --=-t + J 
v 8xj 8xi 

(6.56) 

(6.57) 

The integration range for Equations (6.56) and (6.57) is the entire flowfield. 
For inhomogeneous turbulence, the second term in Equation (6.55) becomes an 
integral with the mean velocity gradient inside the integrand. This emphasizes 
a shortcoming of single-point closure schemes that has not been as obvious in 
any of the closure approximations we have discussed thus far. That is, we are 
postulating that we can accomplish closure based on correlations of fluctuating 
quantities at the same physical location. The pressure-strain correlation very 

clearly is not a localized process, but rather, involves contributions from every 

point in the flow. This would suggest that two-point correlations, i.e., products 
of fluctuating properties at two separate physical locations, are more appropriate. 

• 
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Nevertheless, we expect contributions from more than one or two large eddy 
sizes away to be negligible, and this would effectively define what is usually 
referred to as the locally-homogeneous approximation. Virtually all modelers 
assume that turbulent flows behave as though they are locally homogeneous, and 

use Equation (6.55). 
The forms of the tensors Aij and Mijkl must adhere to a variety of constraints 

resulting from the symmetry of indices, mass conservation and other kinematic 
constraints. We know, for example, that the trace of IIii must vanish and this is 
true for the slow and rapid parts individually. Rotta ( 1 9 5 1 )  postulates that the 

• 

slow pressure-strain term, often referred to as the return-to-isotropy tenn, is 
given by 

(6.58) 

where C1 is a closure coefficient whose value can be inferred from measurements 
[Uberoi ( 1 956)] to lie in the range 

1 .4 < c1 < 1 .s (6.59) 

Turning now to the rapid pressure strain, early research efforts of Donald
son [Donaldson and Rosenbaum ( 1 968)], Daly and Harlow ( 1 970), and Lumley 
( 1 972) assume that the rapid pressure strain is negligible compared to the slow 
pressure strain. However, Crow ( 1 968) and Reynolds ( 1 970) provide simple ex
amples of turbulent flows for which the effect of the rapid pressure strain far 
outweighs the slow pressure strain. 

Launder, Reece and Rodi ( 1 975) have devised a particularly elegant closure 
approximation based almost entirely on kinematical considerations. Building 
upon the analysis of Rotta (195 1 ), they write Mijkl in terms of a tensor aijkl as 
follows. 

(6.60) 

This relation is strictly valid only for homogeneous turbulence. Rotta demon
strated that the tensor O.ijkl must satisfy the following symmetry and normaliza
tion constraints: 

(symmetry) 

(normalization) 

(6.6 1 )  

(6.62) 

Launder et al. propose that the fourth-rank tensor aijkl can be expressed as a 
linear function of the Reynolds-stress tensor. The most general tensor, linear in 

Tij , satisfying the symmetry constraints of Equation (6.61)  is 

aijkl -o:OkjTli - f3(<5zk Tij + OtjTik + oikTlj + Oij Tzk ) 

-C26liTkj + [1JOliOkj + v(ozk Oij + Ozj Oik ) ]k (6.63) 
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where a ,  /3, C2, rJ and v are closure coefficients. Invoking the conditions of 
Equation (6.62), all of the coefficients can be expressed in tenus of C2, viz., 

4C2 + 10 
{3 

3C2 + 2 
= 

1 1  ' = -
1 1  ' rJ 50C2 + 4 20C2 + 6 

(6_64) - 55 ' v = 
55 

Finally, combining Equations (6.60) through (6.64), we arrive at the well-known 
LRR model for the rapid pressure strain. 

LRR Rapid Pressure-Strain Model: 

M 
8Uk A ijkl _8_ = -Q 

Xl 

Pii 

A 

Q 

8Ui 8Ui 
Tim 8 + Tjm 8 Xm Xm 

8 + C2 A 8C2 - 2 f3 1 1  ' 1 1  

and 

A 

' "( 

A 

- {3  - ,:YkSii (6.65) 

Dii 
8Um 8Um 

Tim 8 + Tjm 8 Xj Xi 
(6.66) 

60C2 - 4 
o.4 < c2 < o.6 (6.67) 55 ' 

Note that for compressible flows, the mean strain-rate tensor, Sij , is usually 
replaced by Sij - !Skk8ii in Equation (6.65). 

One of the most remarkable features of this closure approximation is the 
presence of just one undetermined closure coefficient, namely, C2. The value 
of C2 has been established by comparison of model predictions with measured 
properties of homogeneous turbulent flows. Launder, Reece and Rodi ( 1975) 
suggested using C2 = 0.40. Morris ( 1984) revised its value upward to C2 = 

0.50, while Launder ( 1 992) recommends C2 = 0.60. Section 6.4 discusses the 
kind of flows used to calibrate this model. 

Bradshaw ( 1 973b) has shown that there is an additional contribution to Equa
tions (6 .56) and (6.57) that has a nontrivial effect close to a solid boundary. It 
is attributed to a surface integral that appears in the Green' s  function for Equa
tion (6. 5 1 ), equivalent to a volume integral over an identical "image" flowfield 
below the solid surface. This has come to be known as the pressure-echo effect 
or wall-reflection effect. Launder, Reece and Rodi ( 1 975), and most others until 
recently, propose a near-wall correction to their model for IIij that explicitly in
volves distance from the surface. Gibson and Launder ( 1 978), Craft and Launder 
( 1 992) and Launder and Li ( 1 994) propose alternative models to account for the 

pressure-echo effect. For example, the LRR wall-reflection term, rr�;), is 

(6.68) 
e n  

where n is distance normal to the. surface. 
More recent efforts at devising a suitable closure approximation for IIij have 

focused on developing a nonlinear expansion in terms of the anisotropy tensor, 
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" 

biJ • defined in Equation (6.45). Lumley ( 1 978) has systematically developed 
a general representation for IIiJ based on Equations (6.5 1 )  through (6.57). In 
addition to insisting upon coordinate invariance and other required synunetries, 
Lumley insists upon realizability. As noted earlier, this means that all quantities 
known to be strictly positive must be guaranteed to be positive by the closure 
model. Additionally, all computed correlation coefficients must lie between ±1. 
This limits the possible form of the functional expansion for IIij . Lumley shows 
that the most general form of the complete tensor IIiJ for incompressible flow is 
as follows. 

Lumley Pressure-Strain Model: 

(6.69) 

The eleven closure coefficients are assumed to be functions of the tensor 
invariants I I and I I I, i .e., 

(6.70) 

The tensor niJ is the mean rotation tensor defined in Equation (6. 1 2). The LRR 
model can be shown to follow from Lumley's general expression when nonlinear 
terms in biJ are neglected, i.e., when all coefficients except ao, a2, a7 and a9 

are zero. 
A similar, but simpler, nonlinear model has been postulated by Speziale, 

Sarkar and Gatski ( 1 99 1 ) . For incompressible flows, this model, known as the 
SSG model, is as follows. 

SSG Pressure-Strain Model: 

C C* 
8Um 

= - I E +  1 Tmn a 
X n 

2 
bikSJk + bjkSik - 3bmnSmn<5ij 

+Cs k(biknjk + bjk nik ) (6.7 1)  
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c1 = 3.4, Ci = 1.s,  
c; 1 .3, c4 1 .25 , 

c2 4.2, 
Cs - 0.4 

(6.72) 

Interestingly, the SSG model does not appear to require a correction for the 
pressure-echo effect in order to obtain a satisfactory log-layer solution. 

Many other proposals have been made for closing the Reynolds-stress equa
tion, with most of the attention on llij · Weinstock ( 198 1 ), Shih and Lumley 
( 1 985), Haworth and Pope ( 1 986), Reynolds (1 987), Shih, Mansour and Chen 
( 1 987), Fu, Launder and Tselepidakis ( 1987) and Craft et al. ( 1989) have for
mulated nonlinear pressure-strain correlation models. 

As with the k-E model, low-Reynolds-number damping functions are needed 
to integrate through the sub layer when the E equation is used. Damping functions 
appear in the pressure-strain correlation tensor as well as in the dissipation. So 
et al. ( 1 991 )  give an excellent review of stress-transport models including low
Reynolds-number corrections. Compressibility, of course, introduces an extra 
complication, and a variety of new proposals are being developed. 

While the discussion in this subsection is by design brief, it illustrates the 
nature of the closure problem for stress-transport models. Although dimensional 
analysis combined with physical insight still plays a role, there is a greater 
dependence upon the fom1alism of tensor calculus. To some extent, this approach 
focuses more on the differential equations than on the physics of turbulence. This 
is necessary because the increased complel(ity mandated by having to model 
second and higher rank tensors makes it difficult to intuit the proper forms solely 
on the strength of physical reasoning. Fortunately, the arguments developed 
during the past decade have a stronger degree of rigor than the drastic surgery 
approach discussed in Subsection 4.3.2. 

Increasingly, stress-transport models are being tested for nontrivial flows. 
The paper by Schwarz and Bradshaw ( 1994), for example, illustrates the actual 
performance of some of these models in three-dimensional boundary layers. So 
and Yuan ( 1 998) test 8 two-equation models and 3 stress-transport models for 
flow past a backward-facing step. The studies by Pameix et al. ( 1 998) and 
Gerolymos et al. (2004a, 2004b) also provide useful assessments of modem 
stress-transport models. 

6.3.2 Launder-Reece-Rodi Model 

The model devised by Launder, Reece and Rodi ( 1 975) is the best known and 
most thoroughly · tested stress-transport model based on the E equation. Many 

stress-transport models are based on the LRR model and differ primarily in the 

closure approximation chosen for ITii . Combining the closure approximations 
discussed in the preceding subsection, we have the following high-Reynolds
number� compressible form of the model. 
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Reynolds-Stress Tensor: 

Dissipation Rate: 

Pressure-Strain Correlation: 

A 

-/3 

Auxiliary Relations: 

Closure Coefficients [Launder (1992)] : 

& (8 + C2)j1 1 ,  
c1 = 1 .8, 
c€ = o. 18, 

A 

f3 = (8C2 - 2)/1 1 ,  
c2 o.6o, 
cd 1 .44 , 

i' (60C2 - 4)/55 
Cs 0. 1 1  
c€2 1 .92 

3 3 1  

(6.73) 

(6.74) 

(6.75) 

1 
-Pkk (6.76) 
2 

(6.77) 

Note that Equation (6.74) differs from the E equation used with the Standard 
k-E model [Equation (4.48)] in the form of the diffusion tenn. Rather than 
introduce an isotropic eddy viscosity, Launder, Reece and Rodi opt to use the 
analog of the turbulent transport term, Cijk· The values of the closure coefficients 
in Equation (6.77) are specific to the LRR model of course, and their values are 
influenced by the specific form assumed for IIij . In their original paper, Launder, 
Reece and Rodi recommend C1 1 .5, C2 0.4, Cs 0. 1 1, C€ 0. 15, 
Cd 1 .44 and C€2 1 .90. The values quoted in Equation (6.77) are those 
recommended by Launder ( 1 992). 
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6.3.3 Wilcox Stress-w Model 

Not all stress-transport models use the �: equation to compute the dissipation. 

Wilcox and Rubesin ( 1980) postulate a stress-transport model based on their w2 

equation and the LRR model for IIij• with E f3*wk. Although the model 

showed some promise for flows over curved surfaces and for swirling flows, 

its applications were very limited. More recently, Wilcox ( 1988b) proposed a 

stress-transport model, known as the multiscale model, that has had a wider 

range of application. While the multiscale model proved to be as accurate as 

the k-w model for wall-bounded flows, including separation, its equations are 

ill conditioned for free shear flows. Subsequently, Wilcox (1 998) introduced the 
Stress-w model, which removed the multiscale model's deficiencies. 

This section introduces a revised version of the Stress-w model. The high
Reynolds-number, compressible version of the model is as follows. Note that, 
by design, aside from the equation for the Reynolds-stress tensor replacing the 
stress-limiter, the underlying equations for k and w are identical to those of the 
Wilcox (2006) k-w model. 

Reynolds-Stress Tensor: 

Specific Dissipation Rate: 

aw - aw 
j5 

8t + j5Uj ax · J 

Pressure-Strain Correlation: 

A 

-/3 
2 

D . .  - - Po . .  ZJ 3 tJ 

Auxiliary Relations: 

Pij 
au aui J Tim a +Tjm a , Xm Xm 

Closure Coefficients: 
A 

/LT 

Dij 

pkjw 
aum aum 

Tim a +Tjm a , X ·  X ·  J t 

/3 = (8C2 - 2)/11 , 

j.L + (j /LT a Xk 
(6.78) 

(6.79) 

(6.80) 

(6.8 1 )  

p 1 - Pkk 2 
(6.82) 

(6.83) 
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c1 
9 -
5 ' 

13 
(3 f3o/{3 ,  (3* 

25 ' 

f3o 

1 + 85Xw 
ff3 = 1 + 100Xw ' 

0.0708, 

9 
100 ' 

ad 

� 

nijnjkski 
((3*w)3 

c2 

0 ,  

ado, 

' 

10 
19 

1 3 1 - - -
2 '  

a* 
5 ' ado 8 

8k 8w < 0 
8x · 8x · -J J 
8k 8w 

> 0  
8x · 8x ·  J J 

� 1 8um 
sk. = sk · -

- <5k · • t 2 8xm 
t 
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(6.84) 

(6.85) 

(6.86) 

(6.87) 

All closure coefficients shared by the k-w and Stress-w models have the same 
� 

values. The values chosen for &, (3 and i' are those used in the original Launder, 
Reece and Rodi ( 1975) pressure-strain correlation model. This means there are 
two new closure coefficients to be detennined, namely, cl and c2. 

In analyzing the Stress-w model 's sublayer predictions (see Subsection 6.6. 1 ), 
we find that the constant in the law of the wall, C, depends on the values of a 
and C2 . Retaining a 1 /2 from the k-w model, selecting C2 10/ 19 yields 
C ::::::J 5.5 with no viscous damping functions. The traditional procedure for 
determining cl and c2 is to appeal to measurements of homogeneous turbulent 
flows, which we do in the next section. Because we have selected C2 to optimize 
sublayer predictions, in addressing homogeneous turbulence, we effectively seek 
the optimum value of cl that is compatible with c2 10/19. 

Unlike the LRR model, the Stress-w model does not require a wall-reflection 
tetm such as II�j') defined in Equation (6.68). By design, the most significant 
difference between the LRR and Stress-w models is in the scale-deteunining 
equation. The LRR model uses the E equation while the Stress-w model uses 
the w equation. All other differences are minor by comparison. This strongly 
suggests that the end accomplished by the LRR wall-reflection term may be 
to mitigate a shortcoming of the model equation for f. rather than to correctly 
represent the physics of the pressure-echo process [see Parneix et al. ( 1 998)]. 

Before proceeding to applications, it is worthwhile to pause and discuss two 
guidelines followed in formulating the Stress-w model. First, a key objective is to 
create as simple and elegant a stress-transport model as possible. This dictates use 
of the LRR model for IIij , for example, but certainly does not preclude the use of 
a nonlinear model such as that developed by Speziale, Sarkar and Gatski ( 1 99 1 ). 
Similarly, the Daly-Harlow ( 1 970) approximation for Cijk could be replaced by 
a rotationally-invariant form with little additional effort. Second, because of the 
k-w model 's good predictions for a wide range of turbulent flows, the Stress-w 
model is designed to resemble the k-w model to as great an extent as possible 
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for the flows to which both models apply. As we will see in the following 
sections, its predictions for free shear flows and attached boundary layers are 
usually within less than 5% of k-w model predictions. Also, low-Reynolds
number modifications and surface boundary conditions for rough surfaces and 
for mass injection are very similar to those used with the k-w model. 

6.4 App tion to Homogeneous Thrbulent Flows 

Homogeneous turbulent flows are useful for establishing the new closure coef
ficients introduced in modeling the pressure-strain correlation tensor, Ilij . This 
is the primary type of flow normally used to calibrate a stress-transport model. 
Recall that homogeneous turbulence is defined as a turbulent flow that is statis
tically uniform in all directions. This means that the diffusion terms in all of 
the equations of motion are identically zero, as is the pressure-echo correction. 
Hence, the only difference between the «:-based LRR model and the w-based 
Stress-w model when applied to homogeneous turbulent flows is in the scale
determining equation. That is, both models use the LRR pressure-strain model 
and the Kolmogorov isotropy hypothesis for Eij , so that the equations for the 
Reynolds stresses are nearly identical, with 02 lying within the range of values 
recommended for the LRR model, viz., between 0.4 and 0.6. 

Additionally, since the diffusion terms vanish, the equations simplify to first
order, ordinary differential equations, which can sometimes be solved in closed 
form. At most, a simple Runge-Kutta integration is required. Such flows are 
ideal for helping establish values of closure coefficients such as 01 and 02 in 
the LRR model, provided of course that we believe the same values apply to 
all turbulent flows. As noted in the preceding section, we have already selected 
02 10/19 for the Stress-w model. Hence, we seek the optimum value for C1 
compatible with this value of C2 . 

The simplest of all homogeneous flows is the decay of isotropic turbulence, 
which we discussed in Section 4.4 and used to set the ratio of (3* to {30 for the 
k-w model. The Stress-w model equations for k and w simplify to 

dk 
= _ a*wk dt fJ and (6.88) 

For large time, the asymptotic solution for k according to the Stress-w and LRR 
models is given by 

and (6.89) 

Experimental observations summarized by Townsend ( 1 976) indicate that turbu
lence energy varies according to k "" t-n where n 1 . 25 ± 0.06 for decaying 

' ' "' 
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homogeneous, isotropic turbulence. Hence, we can conclude that our closure 
coefficients must lie in the following ranges. 

1 . 19 < {3* I f3o < 1 .31 , 1 .  76 < c€2 < 1 .84 (6.90) 

The Stress-w model' s  chosen values for f3o and {3* [Equations (6.85) and (6.86)] 
give {3* I f3o 1 .27, which satisfies Equation (6.90). However, the value chosen 
for Ce2 in the LRR model is 1 .92, which lies outside the range indicated in 
Equation (6.90). 

Figures 6. 10(a) and (b) compare computed and measured k for decaying 
homogeneous, isotropic turbulence as predicted by the Stress-w model. The 
experimental data in (a) and (b) are those of Comte-Bellot and Corrsin ( 1 97 1 )  
and Wigeland and Nagib ( 1 978), respectively. 
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Figure 6. 1 0: Computed and measured decay of turbulence energy for homoge
neous, isotropic turbulence: Wilcox (2006) Stress-omega model; o Comte
Bel/ot and Corrsin (1971); • Wigeland and Nagib (1978). 

Because the equations we solve for homogeneous shear flows are initial
value problems, the entire solution is affected by the assumed initial conditions, 
especially the initial value of E or w. Estimates of the initial dissipation rate, 
E0, are often quoted for homogeneous turbulence experiments. However, any 
errors in these estimates can have a large effect on the solution at all subsequeni 
times. An alternative method for setting initial conditions is to estimate Eo from 
the differential equation for k at the initial station. In the case of homogenous 
isotropic turbulence, this means 

dk 
dt 0 

• 

k dt 0 

1 
or W0 = -

{3* 
(6. 9 1 )  -

1 dk 
- -

The initial value of w has been selected to match the initial shape of the measured 
curves for the two cases, and the inferred values are quoted in Figure 6 . 10. 
Computed and measured values of k are within 5% for both cases. 
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The second type of homogeneous turbulent flow that is useful for estab
lishing the value of pressure-strain correlation closure coefficients is decaying, 
anisotropic turbulence. Such flows are created in the laboratory, for example, 
by subj ecting turbulence to uniform strain-rate, which yields unequal normal 
Reynolds stresses. The turbulence then enters a region free of strain, and grad
ually returns to isotropy. The Tucker-Reynolds (1968) experiment that we dis
cussed in Section 6. 1 is an example of this type of flow (see Figure 6.1 ) . 

Because the mean strain rate is zero, the rapid pressure-strain term vanishes. 
Then, assuming dissipation follows the Kolmogorov ( 1941)  isotropy hypothesis 
[Equation (6.42)], and using Rotta's ( 195 1) slow pressure-strain tetm [Equa
tion (6.58)] , the Reynolds-stress equation written in tetms of E is 

2 € 
- E6 · · - Cl -
3 ZJ k 

. 

(6.92) 

If the scale-determining equation is for w rather than for E, we simply replace 
C1 E/k hy Cd3*w. The solutions according to the LRR and Stress-w models are 

w Tij + �pkbij 
( Tij + �pkbij t 

(6.93) 

where subscript o denotes initial value. Measurements of decaying anisotropic 
turbulence have been used to determine the closure coefficient C 1 . The data 
of Uberoi ( 1 956), for example, indicate that cl lies between 1 .4 and 1 .8 [see 
Equation (6.59)] . More recent experiments such as those of Le Penven et al. 
( 1 984) further confirm that cl lies in this range. 
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Figure 6 . 1 1 :  Comparison of computed and measured decay of Reynolds stresses 
for homogeneous, anisotropic turbulence: Wilcox (2006) Stress-omega 
model; o, •, o, 0 Le Penven et al. (u12, v12, w'2, I I). 
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Figure 6. 1 1  compares computed normal Reynolds stresses with the measure
ments of Le Penven et al. for decaying homogeneous, anisotropic turbulence as 
predicted by the Stress-w model. The figure presents results in tenns of the 
Reynolds-stress anisotropy second and third tensor invariants, I I and I I I, de
fined by [see Equations (6.45) and (6.70)] 

where u�u'. - �kb · · 
bij . 

� J 2k 
3 

�J 
(6.94) 

Parts (a) and (b) of the figure correspond to III assuming negative and positive 
values, respectively. Part (c) displays II as a function of III, which is gener
ally referred to as the phase-space portrait for this type of flow. As shown, 
differences between theory and experiment are small, indicating that 01 1.8  
is optimum for the Stress-w model. 

Figure 6. 1 2(a) compares computed and measured [Choi and Lumley ( 1 984)] 
normal components of the Reynolds-stress anisotropy tensor, bii . This experi
ment is similar to that of Tucker and Reynolds, with turbulence initially subjected 
to plain strain and then returning to isotropy after the strain is removed. Fig
ure 6. 1 2(b) shows the phase-space portrait of the return-to-isotropy problem, 
plotted as I I112 versus I I I113 . As shown, I I112 is essentially a linear function 
.of III1 13 for this flow according to the LRR model . This computation has been 
done with the original LRR coefficients, i .e., those corresponding to 01 1 .5. 
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Figure 6 . 12 :  Comparison of computed and measured anisotropy tensor and 
phase-space portrait for homogeneous, anisotropic turbulence: - - - LRR model; 
- Sarkar-Speziale model; o, o Choi and Lumley. [From Speziale and So (1996) 
- Pub/ ished with the authors ' permission.} 
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While discrepancies between computed and measured stresses are satisfactory, 
even closer agreement between theory and experiment can be obtained with a 
nonlinear model for the slow pressure-strain model. Sarkar and Speziale ( 1990), 
for example, propose a simple quadratic model for the slow pressure-strain, i.e., 

(6.95) 

where C1 3.4 and C2 4.2 [see Equation (6.7 1 )] .  Figures 6. 1 2(a) and (b) 
compare computed and measured anisotropy tensor components and phase-space 
portraits. The nonlinear model clearly falls within the scatter of the experimental 
data, while the LRR model prediction provides a less satisfactory description. 
The phase-space portrait is especially revealing, with the nonlinear model faith
fully reflecting the nonlinear variation of I I112 with I I I113 • 

Homogeneous turbulence experiments have also been performed that include 
irrotational plane strain [Townsend ( 1 956) and Tucker and Reynolds ( 1 968)] 
and uniform shear [Champagne, Harris and Corrsin ( 1970), Hauis, Graham 
and Corrsin ( 1977), Tavoularis and Corrsin ( 1 98 1 ), and Tavoularis and Katnik 
( 1 989)]. These flows can be used to establish closure coefficients such as C2 in 
the LRR pressure-strain modeL The velocity gradient tensor for these flows is 

. 

0 s 0 
0 -a 0 
0 0 a 

(6.96) 

where a is the constant strain rate and S is the constant rate of mean shear. 
While closed form solutions generally do not exist when mean strain rate 

and/or shear are present, analytical progress can be made for the asymptotic 
forms in the limit t oo .  In general, the specific dissipation rate, u.l "-' Ejk, 
approaches a constant limiting value while k and the Reynolds stresses grow 
exponentially. Assuming solutions of this form yields closed-form expressions 
for the Reynolds stresses. 

Using such analysis for uniform shear (a 0, S i= 0), Abid and Speziale 
( 1 993) have analyzed the LRR and SSG pressure-strain models and two nonlinear 
pressure-strain models developed by Shih and Lumley ( 1 985) [SL model] and 
by Fu, Launder and Tselepidakis (1 987) [FLT model] . Table 6.3 summarizes 
their results, along with results for the Stress-w model and asymptotic values 
determined experimentally by Tavoularis and Kamik (1 989) . Inspection of the 
table shows that the SSG model most faithfully reproduces measured asymptotic 
values of the Reynolds stresses. 

The parameter S k / E is the ratio of the turbulence time scale, E I k, to the 
mean-flow time scale as represented by the reciprocal of S. Inspection of the 
table shows that the Stress-w model predicts a value for SkI E that is within less 
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than 2% of the measured value, closest of the models tested. While the LRR 
model is also very close with the predicted and measured values differing by 
3 .4%, the SL, FLT and SSG models all differ by at least 10% and by as much 
as 49%. This is important because all of the other models use the E equation, 
which plays a role in determining the time scale of the various physical processes 
represented in the Reynolds-stress equation. Errors associated with the E equation 
clearly have an adverse impact on the balance of these physical processes. 

Table 6.3 : Anisotropy-Tensor Limiting Values for Uniform Shear. 

Stress-w LRR SL FLT Measured I 
bxx 0. 1 42 0. 1 52 0 . 1 20 0. 1 96 0.2 1 8  0.2 1 0  

bxy -0. 1 56 -0. 1 86 -0. 1 2 1  -0. 1 5 1  . -0. 1 64 -0. 1 60 

byy -0. 1 3 7  -0. 1 1 9  -0. 1 22 -0. 1 36 -0. 1 45 -0. 1 40 

bzz -0.005 -0.033 0.002 -0.060 -0.073 -0.070 
Sk/E 4.86 1 4.830 7.440 5.950 5.500 5.000 

Note that the anisotropy tensor is proportional to the difference between the 
Reynolds-stress tensor and � k.  Hence, percentage differences between computed 
and measured values of bij present an exaggerated estimate of the differences 
between computed and measured Reynolds stresses. For example, the SL model
predicted value of bxx is 43% smaller than the measured value. However, this 
corresponds to a difference between computed and measured u'2 of only 1 7%. 

Figure 6. 1 3  compares Stress-w model Reynolds stresses and corresponding 
measured values for the Tavoularis and Kamik ( 1 989) uniform-shear experiments 
with S 29.0 sec-1 , 39.9 sec-1 and 84.0 sec- 1 • The initial values used for w 

u� u'. (m2 /sec2 )  • J u' ul (m2/sec2) • J u�uj (m2/sec2) 

1 .5 0.6 1 .8 
u'2 0 u'2 0 0 0 u'2 0 0 1 .2 0 

1 .0 0.4 
w'2 0 0 

0.5 0.2 • 0.6 0 
0 

v'2 v'2 v'2 

0.0 0.0 0.0 
u1v 1  u 1v 1  

S t  S t  S t  
(a) S = 29.0 sec- 1 (b) S = 39.9 sec- 1 (c) S = 84.0 sec- 1 

Figure 6 . 1 3 :  Computed and measured Reynolds stresses for homogeneous, plane 
shear: Wilcox (2006) Stress-w model; o, •, o, t> Tavoularis and Karnik (u'2, 
v' 2 , w'2, u'v'). 
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correspond to having Sk0/€0 S/ (f3*w0) equal to 1 .86, 3 . 10  and 3 .8 1 ,  respec
tively. Consistent with the asymptotic results summarized in Table 6.3, computed 
values of uv and v'2 are very close to measurements, while computed u'2 and 
w'2 values are generally 1 0% below and above measurements, respectively. 

Turning to flows with irrotational strain rate (a =!= 0, S 0), Figures 6. 1 4(a) 
and (b) compare Stress-w model and measured [Tovmsend (1 956) and Tucker 
and Reynolds ( 1968), respectively] Reynolds stresses. The strain rate for the 
Townsend case is a 9.44 sec- 1 (with ak0/€0 0.57), while that of the 
Tucker-Reynolds case is a 4.45 sec- 1 (with ak0/€o = 0.49). Launder, Reece 
and Rodi ( 1 975) report very similar results for the Tucker-Reynolds case. 

u?(m2/sec2) 
0.030 -- -- -- --

u?(m2/sec2) 
0.05 

0.025 

0.020 

O.Q l5  

0.0 1 0  

0.005 

0 
0 

0 

0.04 

O.o3 

0.02 

0.01 

0.000 0.00 - - - ---
0.0 0.4 0.8 1 .2 1 . 6 0.0 0.5 1 .0 1 .5 2.0 2.5 

at at 
(a) Townsend (b) Tucker-Reynolds 

Figure 6. 1 4: Computed and measured Reynolds stresses for homogeneous, plane 
strain: Wilcox (2006) Stress-w model; o, •, o Experiment (u12, v'2, w12). 

To illustrate how much of an improvement stress-transport models make for 
flows with sudden changes in mean strain rate, Figure 6. 1 5  compares measured 
distortion parameter, K, for the Tucker-Reynolds experiment with computed 
results obtained using the Stress-w model and the Wilcox-Rubesin ( 1980) k-w2 

model. As shown, the Stress-w model predicts a gradual approach to isotropy 
and the computed K more closely matches the experimental data. 

6.5 Application to Free Shear Flows 

While stress-transport models eliminate many of the shortcomings of the Boussi
nesq eddy-viscosity approximation, they are not necessarily more accurate than 
two-equation models for free shear flows. This is true because the scale deter
mining equation (w, E, .e, etc.) used by a stress-transport model plays a key role. 
For example, the Wilcox ( 1 988b) multiscale model uses the w equation of the 
Wilcox ( 1 988a) k-w model. Just as the spreading rates of this k-w model are 

' ' 
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Figure 6 . 1 5 :  Computed and measured distortion parameter for the Tucker
Reynolds plane-strain flow: Wilcox (2006) Stress-w model; - - - Wilcox
Rubesin (1980) k-w2 model; o • 6 Tucker-Reynolds. 

significantly larger than measured (see Table 4.5), so are those predicted by the 
multiscale model. Other shortcomings, such as the round-jet/plane-jet anomaly, 
also cany through from two-equation models to stress-transport models. 

Table 6.4 summarizes computed and measured spreading rates for the LRR 
model and the Stress-w model. Comparison with Table 4.4 shows that the 
Stress-w model predicts spreading rates similar to those of the Wilcox (2006) 
k-w model. The average difference between computed and measured spreading 
rates is 4%. Thus, the Stress-w model provides credible solutions for plane, 
round and radial jets. The LRR model 's spreading rates are roughly 1 0% larger 
than those of the Standard k-E model [cf. Table 4.4] . As noted by Launder 

Table 6.4: Free Shear Flow Spreading Rates for the Stress-w and LRR Models. 

I Flow I Stress-w Model I LRR Model I Measured J 
Far Wake 0.33 1 T 

0.320-0.400 

Mixing Layer 0.096 0. 1 04 0. 1 03-0.120 
Plane Jet 0. 1 1 0 0 .123 0.1  00-0. l l 0 
Round Jet 0.091 0 .135 0.086-0.096 
Radial Jet 0.097 0.096-0 . 1 1 0  
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Figure 6 . 1 6: Comparison of computed and measured width for a curved mixing 
layer: LRR model; - - - Standard k-E model; • Castro and Bradshaw. [From 
Rodi (1981) -- Copyright @  AIAA 1981 Used with permission.] 

and Morse ( 1 979), because the predicted round-jet spreading rate exceeds the 
predicted plane-jet spreading rate, the LRR model fails to resolve the round
jet/plane-jet anomaly. 

Figure 6. 1 6  compares computed and measured width of a curved mixing 
layer. The computation was done using the LRR model [Rodi ( 198 1 )], and the 
measurements correspond to an experiment of Castro and Bradshaw ( 1 976) with 
stabilizing curvature. The LRR model predicts a greater reduction in width than 
the Standard k-E model. However, the LRR model 's predicted width lies as far 
below the measured width as the k-t model 's prediction lies above. Although not 
shown in the figure, Rodi 's ( 1 97 6) Algebraic Stress Model predicts a width that 
is about midway between, and thus in close agreement with measured values. 

As a final comment, with all of the additional new closure coefficients attend
ing nonlinear pressure-strain models, it is very likely that such models can be 
fine tuned to correct the round-jet/plane-jet anomaly. However, we should keep 
in mind that the anomaly underscores a deficiency in our physical description 
and understanding of jets. Such fine tuning reveals nothing regarding the nature 
of these flows, and thus amounts to little more than a curve-fitting exercise. 

By contrast, the physically-plausible argument presented by Pope ( 1 978) re
garding the role of vortex stretching (Subsection 4.5.5) offers a more credible 
solution. While the modification to the E equation fails to rectify the k-E model 's 
deficiencies for jets, the modificatiop to the coefficient (3 [Equation (6.87)] ap
pearing in the Stress-w model, which uses the linear LRR pressure-strain model, 
implements Pope's ideas quite effectively. 
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This section focuses upon wall-bounded flows, including channel and pipe flow, 
and boundary layers with a variety of complicating effects. Before address
ing such flows, however, we discuss surface boundary conditions. As with 
two-equation models, we have the option of using wall functions or integrating 
through the viscous sublayer. 

6.6.1 Surface Boundary ConditionsNiscous Modifications • 

Wall-bounded flows require boundary conditions appropriate to a solid boundary 
for the mean velocity and the scale-determining parameter, e.g., E or w. Ad
ditionally, surface boundary conditions are needed for each component of the 
Reynolds-stress tensor (implying a boundary condition for k). The exact surface 
boundary conditions follow from the no-slip condition: 

at (6.97) 

Stress-transport models, like two-equation models, may or may not predict a 
satisfactory value of the constant C in the law of the wall when the equations 
are integrated through the viscous sublayer. If the model fails to predict a sat
isfactory value for C, we have the choice of either introducing viscous damp
ing factors or using wall functions to obviate integration through the sublayer. 
The near-wall behavior of stress-transport models is strongly influenced by the 
scale-determining equation. Models based on the E equation fail to predict an 
acceptable value of C unless damping factors are applied. When damping fac
tors are used, the equations become very stiff and are very difficult to integrate 
through the sublayer [see Durbin ( 1 99 1 )  and Laurence and Durbin (1 994)] . By 
contrast, models based on the w equation predict an acceptable value of C and 
are generally quite easy to integrate through the sublayer. 

The most rational procedure for devising wall functions is to analyze the log 
layer with perturbation methods. As with the k-E model, the velocity, k and 
either E or w are given by 

U U7 !.en UrY + C K, v (6.98) 

(6.99) 

Similar relations are needed for the Reynolds stresses, and the precise forms 
depend upon the approximations used to close the Reynolds-stress equation. Re
gardless of the model, the general form of the Reynolds-stress tensor is 

as y -----+ 0 (6. 100) 
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where Wii is a constant tensor whose components depend upon the model's 
closure coefficients. The problems section examines log-layer structure for the 
LRR and Stress-w models. The tensor WiJ for these two models is 

-0.908 
0 .304 

0 

-0.852 
0.301 

0 

0.304 
-0.435 

0 

0.301 
-0.469 

0 

0 
0 

-0.658 

0 
0 

-0.679 

(Stress-w model) (6. 1 0 1 )  

(LRR model) (6. 102) 

So, Lai, Zhang, and Hwang ( 1 991 )  review low-Reynolds-number corrections 
for stress-transport models based on the E equation. The damping functions gener
ally introduced are similar to those proposed for the k-E model (see Section 4.9). 
As with the k-E model, many authors have postulated low-Reynolds-number 
damping functions, and the topic remains in a continuing state of development. 

As with the k-w model, the surface value of specific dissipation rate, Ww, de
tennines the value of the constant C in the law of the wall for the Stress-w model. 
Perturbation analysis of the sublayer shows that the limit ww oo corresponds 
to a perfectly-smooth wall and, without low-Reynolds-number corrections, the 
asymptotic behavior of w approaching the surface for both the k-w and Stress-w 
models is 

6llw 
w --t -

f3oY2 as y 0 (Smooth Wall) (6. 1 03) 

Using Program SUBLAY (see Appendix C), the Stress-w model 's sublayer 
behavior can be readily determined. Most . importantly, the constant, C, in the 
law of the wall is predicted to be 

(6. 1 04) 

This is close enough to 5 .0 to justify integrating the Stress-w model equations 
through the sublayer without the aid of viscous damping functions. Figure 6. 1 7  
compares Stress-w model smooth-wall velocity profiles with corresponding mea
surements of Laufer ( 1 952), Andt;rsen, Kays and Moffat ( 1 972), and Wieghardt 
[as tabulated by Coles and Hirst ( 1969)]. Figure 6. 1 8  compares computed turbu
lence production and dissipation terms with Laufer's ( 1952) near-wall pipe-flow 
measurements. Aside from the erroneous dissipation data for y+ < 10, predic
tions are within experimental error bounds. 

As with the k-w model, the value of C is sensitive to the value of e5 .  Its value 
is also affected by the value chosen for C2 .  For consistency with the k-w model, 

the value of C5 has been chosen to be 1/2. Then, selecting C2 10/19 0.526 
gives the value quoted in Equation (6. 104). To illustrate the sensitivity of C to 
C2, note that choosing C2 0.500 gives C 5.05. 
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Figure 6 . 17 :  Comparison of computed and measured sublayer velocity profiles: 
-- Wilcox (2006) Stress-w model; o Laufer; • Andersen et a!. ; o Wieghardt. 
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Figure 6. 1 8 :  Comparison of computed and measured production and dissipation: 
-- Stress-w model; o Laufer. 
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Since the Stress-w model has the property that the constant C varies with the 
surface value of w, we can correlate Ww with surface roughness height, ks,  and 
surface mass-injection velocity, vw . The resulting correlations are a little different 
from those appropriate for the k-w model (see Subsections 4.7.2 and 4.7.3). The 
surface boundary conditions based on these correlations are as follows. 

For rough surfaces: 

at y 0 (Rough Wall) (6. 105) 

where the dimensionless coefficient S R is defined in tetms of the dimensionless 
roughness height, k"t Urks/Vw,  by 

200 
2 

kt 
' 

SR 
70 200 

2 

kt 
+ --

kt 
. 

For surfaces with mass injection: 

·u2 S 
W = T B at 

70 

kt 
(.'5-k"t ' ' 

k+ < 5 8 -

k+ > 5 s 

(Mass Injection) 

(6. 106) 

(6. 1 07) 

where the dimensionless coefficient S.s is defined in terms of the dimensionless 
injection velocity, v,;t vwfu-,-, by 

v;t (1 + 5v;!; ) 
24 

(6. 1 08) 

As with the k-w model, for flows with suction ( Vw < 0), either the smooth
surface (Equation (6. 103)] or slightly-rough-surface [Equation (4.203) with 
kt < 5] boundary condition for w is appropriate. 

While the Stress-w model does not require viscous damping functions to 
achieve a satisfactory sublayer solution, introducing low-Reynolds-number cor

rections can improve model predictions for a variety of flows. Most importantly, 
with straightforward viscous damping functions very similar to those introduced 

for the k-w model (see Subsection 4.9.2) , the model' s ability to predict transition 
can be greatly improved. As with the k-w model, we let 

* k  
Vr = a  w and (6. 109) wv 

and the closure coefficients in Equations (6.83) - (6.85) are replaced llly: 
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(6. 1 1 0) 

(8C2 - 2)/1 1 ,  (60C2 - 4)/5.5 (6 . 1 1 1) 

-
2 '  

3 
u* = -

5 ' 
1 -
9 ' 

1 

A 21  
'Yo = 

2000 

22 
Rw = 9 

10 
19 (6. 1 1 2) 

(6. 1 1 3) 

(6. 1 1 4) 

With these viscous corrections, the Stress-w model reproduces all of the low
Reynolds-number k-w model transition-predictions discussed in Subsection 4.9.2, 
and other subtle features such as asymptotic consistency. The modification to 
the coefficient C1 guarantees that the Reynolds shear stress goes to zero as y

3 

for y 0. The values chosen for R13, Rk and Rw yield C 5.44. 
Finally, the rough-surface boundary condition for the low-Reynolds-number 

version of the Stress-w model replaces Equation ( 6. 1 06) with 

200 
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kt 
' 

SR 
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kt 
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kt 

2 50 e5-k"t -
kt 
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k+ > 5 s 

For a surface with mass injection, Equation (6. 1 08) is replaced by 

(6. 1 1 5) 

(6. 1 1 6) 
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6.6.2 c and Pipe Flow 

Figure 6. 19  compares computed and measured velocity and Reynolds-stress pro
files for channel flow using the original Launder-Reece-Rodi model. The com
putation was done using wall functions. Velocity profile data shown are those 
of Laufer ( 195 1 )  and Hanjalic ( 1 970), while the Reynolds-stress data are those 

of Comte-Bellot ( 1965). As shown, with the exception of u'2, computed and 
measured profiles differ by less than 5%. The computed and measured u'2 pro
files differ by no more than 20%. Although not shown, even closer agreement 
between computed and measured Reynolds stresses can be obtained with low
Reynolds-number versions of the LRR model [see So et al. ( 1991)] .  
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Figure 6.19 :  Computed and measured flow properties for channel flow: (a) 

- LRR model, !:::. Laufer, • Hanjalic; (b) , - - -, - - LRR model ( u'2 fur, 

v'2/u7, w'2/u7), o , e , o Comte-Bellot ( u'2/tt7, v'2 /u7, w'2/u7}. 

One of the most controversial features of the LRR-model solution for channel 
flow is  the importance of the pressure-echo term throughout the flow. The 

pressure-echo contribution on the centerline is approximately 1 5% of its peak 

value. It is unclear that a supposed near-wall effect should have this large an 
impact at the channel centerline. On the one hand, some researchers argue that 

the echo effect scales with maximum eddy size which, for channel flow, would 
be about half the channel height. What matters is the ratio of eddy size to y. 
This is (nominally) constant through the log layer and doesn't fall much in the 

defect layer. 
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Figure 6.20: Comparison of computed and measured channel-flow properties, 
ReH 13750. High-Re Stress-w model; - - - Low-Re Stress-w model; 
o Mansour et al. (DNS); o Halleen-Johnston correlation. 

On the other hand, the Stress-w model despite all its similarity to the 
LRR model aside from its use of the w equation in place of the E equation -
does not require a pressure-echo contribution to achieve a satisfactory channel
flow solution. As noted earlier, this strongly suggests that the unreasonably-large 
pressure-echo tenn used in the LRR and other €-equation-based stress-transport 
models is needed to accommodate a deficiency of the modeled E equation, most 
likely its ill-conditioned near-wall behavior. 

Figure 6.20 compares computed, measured and DNS channel-flow properties 
for the Stress-w model with and without viscous corrections. Computed skin 
friction is generally within 6% of the Halleen and Johnston ( 1 967) correlation [see 
Equation (3 . 1 39)]. Velocity, Reynolds shear stress, and turbulence kinetic energy 
profiles differ from DNS data by less than 6%. Most notably, the low-Reynolds
number model predicts the peak value of k near the wall to within 7% of the DNS 
value for channel flow. Turbulence-energy production, p+ VTxy(8Uf8y)fu';- , 
is within 5% of the DNS results, and the dissipation rate, E+ vt:fu';-, is within 
10% of the DNS results except very close to the surface. 



350 

yj(D/2) 

1 .0 

CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION 

0.8 

0.6 

0.4 

0.2 

0.0 
0.0 0.2 

yj(D/2) 

1 .0  

0.8 

0.6 

0.4 0.6 
U/Urn 

0 
0 

U ju.,. 

20 

15 

10 

5 

0 
0.8 1 .0  1 

yj(D/2) 

1 .0  

0.8 

0.6 

0.4 0.4 

0 .2  0.2 

0.0 0.0 
0.0 0.2 0.4 0.6 0.8 1 .0 0 

--u'v' ju; 
1 

10 
u.,.yjv 

0 

2 3 
k/u; 

4 

10 

5 

2 

0.3 

0.2 

0 .1  

0.0 

-0.1 

-0.2 

- -0.3 
5 0 

� Production 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •  

.__ Dissipation 

20 40 60 80 100 
u.,.yjv 

Figure 6.2 1 :  Comparison of computed and measured pipe-flow properties, 
Rev 40000. High Re Stress-w model; - - - Low Re Stress-w model; 
o Laufer; o Prandtl correlation. 

Figure 6.2 1 compares computed and measured properties for pipe flow. Com
puted c1 differs from Prandtl 's universal law of friction [see Equation (3 . 140)] 
by less than 7% except at the lowest Reynolds numbers, where the formula is 
known to be inaccurate. As with channel flow, velocity, Reynolds shear stress 
and turbulence kinetic energy profiles differ from measurements by less than 6%. 
The low-Reynolds-number Stress-w model predicts a peak value of k near the 
wall within 5% of the measured value. 

In both channel and pipe flow, the most noticeable difference between com
puted and measured flow properties occurs for the dissipation when y+ < 20. 
The DNS channel-flow data show that dissipation achieves its maximum value 
at the surface, a feature that is not captured by the low-Reynolds-number ver
sion of the Stress-w model. Several low-Reynolds-number versions of the LRR 
model have been developed that closely mimic the near-wall behavior of the 

dissipation. This is accomplished with viscous damping functions that are much 
more complicated than the simple bilinear fonns used for the Stress-w model 
[see Equations (6. 1 1 0)] . The excellent overall agreement between theory and 
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experiment for all other features of the channel- and pipe-flow solutions casts 
doubt on the importance of duplicating this subtle feature of the solution, with 
the attendant complication (and the potential source of numerical mischief) that 
would be involved in forcing the model to duplicate the measured surface value 
of f:. 

Capturing other subtle details such as the sharp peak in k near the surface, 
and achieving asymptotic COnsistency (e.g., k rv y2 and Txy rv y3) has been 
done with virtually no change in skin friction and in mean-flow and turbulence
property profiles above y+ � 10. Similarly, low-Reynolds-number versions of 
the LRR model have their most significant changes in turbulence-property profiles 
confined to the portion of the channel below y+ � 20. 

Unlike the Stress-w model however, some low-Reynolds-number variants of 
the LRR model provide accurate descriptions of near-wall dissipation while si
multaneously giving nontrivial discrepancies between computed and measured 
skin friction for typical wall-bounded flows. By contrast, the low-Reynolds
number corrections have virtually no effect on the Stress-w model' s  predicted 
skin friction. 

6.6.3 Channel Flow 

Rotating channel flow is an interesting application of stress-transport models. As 
with flow over a curved surface, two-equation models require ad hoc corrections 
for rotating channel flow in order to make realistic predictions [e.g., Launder, 
Priddin and Sharma ( 1 977) and Wilcox and Chambers ( 1 977)] . To understand 
the problem, note that in a rotating coordinate frame, the Coriolis acceleration 
yields additional inertial terms in the Reynolds-stress equation. Specifically, in a 
coordinate system that is rotating with angular velocity, n, the Reynolds-stress 

• • 

equatiOn IS 

(6. 1 1 7) 

where tjkm is the permutation tensor. Note that if the rotation tensor, nij , 
appears in any of the closure approximations for f:ij, nij or Cijk. it must be 
replaced by nij + €ikjnk .  

Contracting Equation (6. 1 1 7) yields the turbulence kinetic energy equation. 
Because the trace of the Coriolis term is zero, there is no explicit effect of rotation 
appearing in the equation for k. Since rotation has a strong effect on turbulence, 
this shows why ad hoc coordinate-frame-rotation modifications are needed for a 
two-equation model. 
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Figure 6.22 compares computed and measured velocity profiles for a channel 
with a constant angular velocity about the spanwise (z) direction. Computations 
have been done using the Gibson-Launder (1 978) stress-transport model and the 
Standard k-E model. Experimental data are those of Johnston et al. ( 1972), cor
responding to an inverse Rossby number, OH/Um 0.21,  where H is channel 
height and Urn is average velocity. The k-E model 's velocity profile is symmetric 
about the center line. Consistent with measurements, the Gibson-Launder model 
predicts an asymmetric profile. However, as clearly shown in the figure, the 
velocity and shear stress on the "stable" side near y 0 are underestimated. 

u.,.. 

(!) .  0.8 '-../ 
0 

0.4 
H 

0.2 

' 
' 

U(Y) L. 

\ \ 

D 
D 

0 0.2 0.4 0.8 0.8 1.0 

y/H 

Figure 6.22: Computed and measured velocity profiles for rotating channel flow 
with Oll/Um 0. 21:  Gibson-Launder model; - - - k-E model; o Johnston 
et a!. [From Speziale (1991) Published with the author 's permission.] 

6.6.4 Boundary Layers 

Table 6.5 and Figure 6.23 compare computed and measured skin friction for 
the 1 6  incompressible boundary layers considered in Chapters 3 and 4 (see Fig
ures 3 . 17,  3 . 19, 4.4, 4.30 and 4.40). The figure includes numerical results for 
the Stress-w model with and without low-Reynolds-number corrections. Both 
versions of the Stress-w model provide acceptable predictions for all ranges of 
pressure gradients, from favorable to strong adverse. 

Table 6.5: Differences Between Computed and Measured Skin Friction. 

I Pressure Gradient I Flows I Low Re Stress-w I High Re Stress-w I 
Favorable 1 400, 1 300, 2700, 6300 5% 5% 
Mild Adverse 1 1 00, 2 1 00, 2500, 4800 5% 6% 
Moderate Adverse 2400, 2600, 3300, 4500 1 2% 10% 
Strong Adverse 0 1 4 1 , 1 200, 4400, 5300 1 2% 1 3% 
All - 8% 8% 
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Although no results are included for €-based stress-transport models, older 
versions are generally only a bit closer to measurements than the k-E model 
(cf. Figure 4.4). By contrast, newer versions, especially those with nonlinear 
pressure-strain terms, appear to more faithfully reproduce experimental data. For 
example, Hanjalic et al. ( 1 997) have developed an €-based stress-transport model 
(with a linear pressure-strain tetm) that accurately predicts effects of adverse 
pressure gradient. Using perturbation methods, Henkes (1 998a) has shown that 
this model is as close to measurements as the k-w model for equilibrium boundary 
layers (i.e., for constant f3r - see Section 4.6), strongly suggesting that it will 
perform well in general boundary-layer applications. 

Although the Hanjalic et al. model has a large number of empirical functions 
designed to permit the model to achieve asymptotic consistency and the ability 
to predict transition and relaminarization, the improved accuracy for effects of 
pressure gradient appears to result from a single modification to the € equation. 
Specifically, Hanjalic et al. add a dissipation term of the form 

1 8£ 8£ 
(6. 1 1 8) 

where Ce 2.5 is a closure coefficient and £ k312 /E is the turbulence length 
scale. This term limits the growth of£ in the log layer, and cancels the undesirable 
effects of cross diffusion (relative to the k-w model) that plague the k-E model 
[see the discussion at the end of Subsection 4.6.2] . 

Surface curvature, like system rotation, has a significant effect on structural 
features of the turbulent boundary layer. As discussed in Section 6 . 1 ,  in the 
absence of ad hoc modifications, such effects cannot be accurately predicted 
with a two-equation model, as curvature has a trivial effect on the turbulence 
kinetic energy equation. In principle, stress-transport models display none of 
these shortcomings. Thus, computing curved-wall boundary layers poses an 
interesting test of stress-transport models. 

Figure 6.24 presents results of two computations done with the Stress-w 
model for flow over a convex surface. The two cases are the constant-pressure 
and adverse-pressure-gradient flows that So and Mellor ( 1 972) have investigated 
experimentally. To insure accurate starting conditions, the measured momentum 
and displacement thickness at x = 2 ft. have been matched to within 1% for both 
cases, a point well upstream of the beginning of the curved-wall portion of the 
flow at x = 4.375 ft. For both cases, computed and measured flow properties 
differ by less than 8%. 

The LRR model also offers important improvement in predictive accuracy 
relative to the k-E model for flows with secondary motions. Lai et al. ( 1 99 1 ), 
for example, have successfully applied three variants of the LRR model with 
wall functions to flow in a curved pipe. Consistent with measurements, their 
computations predict existence of secondary flows. 
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Figure 6.24: Computed and measured skin friction for flow over a convex wall: 
- High Re Stress-w model; - - - Low Re Stress-w model; o So and Mellor. 

Turning to effects of compressibility, a stress-transport model 's perfonnance 
is intimately tied to the scale-determining equation. Models based on the E 
equation will share the k-E model' s  incorrect density scaling (see Section 5.6). 
By contrast, models based on the w equation share the k-w model's ability to 
accurately predict the compressible law of the wall. 

Figure 6.25 confirms this point for the Stress-w model . The figure compares 
computed effects of Mach number and surface cooling on flat-plate boundary 
layer skin friction. The turbulent heat-flux vector has been computed accord
ing to Equation (5.54) with constant turbulent Prandtl number. Figure 6.25(a) 
compares computed ratio of skin friction to the incompressible value, c10 , as a 
function of Mach number with the Van Driest correlation. Figure 6.25(b) focuses 
upon effects of surface temperature on flat-plate skin friction at Mach 5 .  fu all 
computations, momentum-thickness Reynolds number, Reo, is 104 at the point 
where Cf / c fa has been computed. fuspection of the figure shows that differences 
between the predicted values and the correlated values nowhere exceed 3%. 
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Figure 6 .25 : Computed and measured effects of freestream Mach number and 
surface cooling on flat-plate boundary-layer skin friction: Wilcox (2006) 
Stress-w model; - - - Wilcox (2006) k-w model; o Van Driest correlation. 

Stress-transport models hold promise of more accurate predictions for three
dimensional flows. The primary reason two-equation models are inaccurate for 
three-dimensional boundary layers, for example, lies in their use of an isotropic 
eddy viscosity. However, the eddy viscosities in the streamwise and crossflow 
directions of a typical three-dimensional boundary layer can differ significantly. 
Figure 6 .26 compares computed and measured skin friction for such a flow, a 
boundary layer on a segmented cylinder, part of which rotates about its axis. 
The experiment was performed by Higuchi and Rubesin ( 1 978). As shown, the 
Wilcox-Rubesin ( 1 980) stress-transport model most accurately describes both 
the axial ( c f"' )  and transverse ( c f z ) skin friction components in the relaxation 
zone, i.e., the region downstream of the spinning segment. The Cebeci-Smith 
algebraic model and the Wilcox-Rubesin ( 1980) two-equation model yield skin 
friction components that differ from measured values by as much as 20% and 
1 0%, respectively. 

The final round of applications is for incompressible, unsteady turbulent 
boundary layers. These flows pose a difficult challenge.to a turbulence model be
cause many complicated frequency-dependent phenomena are generally present, 
including periodic separation and reattachment. 

Wilcox (1 988b) has simulated the experiments performed by Jayaraman, 
Parikh and Reynolds ( 1 982) with a simplified stress-transport model (viz. the 
multiscale model). In these experiments, a well developed steady turbulent 
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boundary layer enters a test section which has been designed to have freestream 
velocity that varies according to: 

Ue = U0 { 1 - ax' [l - cos(21T ft)] } , x' (x - xo)/ (xl - xo) (6. 1 1 9) 

The quantity x' is fractional distance through the test section where x0 and x1 are 
the values of streamwise distance, x, at the beginning and end of the test section, 
respectively. Thus, an initially steady turbulent boundary layer is subjected to a 
sinusoidally varying adverse pressure gradient. The experiments were performed 
for low- and high-amplitude unsteadiness characterized by having a �  0.05 and 
0.25, respectively. For both amplitudes, experiments were conducted for five 
frequencies, J, ranging from 0. 1 Hz to 2.0 Hz. Wilcox simuiates nine of the 
experiments, including all of the low-amplitude cases and four of the five high
amplitude cases. 

In order to compare computed and measured flow properties, we must de
compose any flow property -\(x, t) in terms of three components, viz. , 

- -

-\(x , t) = -\(x) + -\(x, t) + X  (x, t) (6. 120) 

where ,\(x) is the long-time averaged value of -\(x,  t) ,  5.(x, t) is the organized 
response component due to the imposed unsteadiness, and A' ( x, t) is the turbulent 
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fluctuation. Using an unsteady boundary-layer program, Wilcox computes the 
phase-averaged component, < .X(x, t) >, defined by 

- -
< .X(x, t) >= .X(x) + .X(x, t) 

Jayaraman et al. expand < .X(x, t) > in a Fourier series according to 

-

< .X(x ,  t) >= .X(x) + 
:..- An,y (x) cos [2mr ft + ¢n,y (x)) 

n=l 

(6. 1 2 1 )  

(6. 122) 

Velocity profile data, for example, are presented by Jayaraman et al. in terms of 
u(x), A1 ,u (x) and ¢1,u(x). These quantities can be extracted from the boundary
layer solution by the notmal Fourier decomposition, viz., by computing the fol
lowing integrals. 

1 /f 
u(x) f < u(x, t) > dt 

0 
1 /f 

A1 ,u (x) cos cP1 ,u f < u(x, t) > cos (2n}t) dt 
0 

1 /f 
< u(x, t) > sin (27rJt) dt 

0 

(6. 1 23) 

(6. 1 24) 

(6. 1 25) 

Figure 6.27 compares computed and measured velocity profiles at x' = 0.88 
for the five low-amplitude cases. As shown, computed mean velocity profiles 
differ from corresponding measured profiles by no more than 5% of scale. Com
parison of computed and measured A1 ,u profiles shows that, consistent with 
measurements, unsteady effects are confined to the near-wall Stokes layer at the 
higher frequencies (f > 0.5 Hz). By contrast, at the two lowest frequencies, the 
entire boundary layer is affected, with significant amplification of the organized 
component occurring away from the surface. Differences between the numeri
cal and experimental A1,u profiles are less than 10%. Computed and measured 
phase, <P1,u, profiles are very similar with differences nowhere in the flowfield 
exceeding 5°. 

Figure 6.28 compares computed and measured velocity profiles at x' 0.94 
for the high-amplitude cases. As for the low amplitude cases, computed and 
measured u(x) profiles lie within 5% of scale of each other. Similarly, computed 
A1 ,u and ¢1 ,u profiles differ from corresponding measurements by less than 
1 0%. To provide a measure of how accurately temporal variations have been 
predicted, Figure 6.29 compares computed and measured shape factor through 
a complete cycle for all four frequencies. Differences between computed and 
measured shape factors are less than 5%. 
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The four high-amplitude cases have also been computed using the Wilcox 
(1988a) k-w model. Figure 6.29 shows that k-w and multiscale-model predictions 
differ by only a few percent. Although it is possible the test cases are not as 
difficult as might be expected, this seems unlikely in view of the wide Strouhal 
number range and the fact that periodic separation and reattachment are present. 
More likely, the k-w model fares well because all of the cases have attached 
boundary layers through most of each cycle and in the mean. 
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Figure 6.29: Comparison of computed and measured temporal variation of shape 
factor for the high-amplitude cases: - - - Wilcox (1 988a) k-w model; Wilcox 
(1988b) multiscale model; • Jayaraman et al. [From Wilcox (1988b) Copy-
right ® AIAA 1988 Used with permission.] 

As a closing comment, many recent turbulence modeling efforts focusing 
on unsteady boundary layers mistakenly credit their success (or lack of it) to 
achieving asymptotic consistency as y 0 with the k-E model or with a stress
transport model based on the E equation. Recall from Subsection 4.9 . 1  that 
asymptotic consistency is achieved when a turbulence model predicts 

u
' 2 -7> y

2
, v

' 2 -+ y
4

, w
' 2 --+ y

2
, u'v

' ___., 3 
y ' E - constant as y 0 

(6. 1 26) 
The computations described above were done with the high-Reynolds-number 

versions of the Wilcox ( 1 988a) k-w and Wilcox ( 1 988b) multiscale models, nei
ther of which is asymptotically consistent. All that appears to be necessary is 
to achieve a satisfactory value for the constant C in the law of the wall. This 
makes sense physically as the dissipation time scale is so short in the sublayer 
that the sublayer responds to changes in the mean flow almost instantaneously 
and thus behaves as a quasi-steady region. Consequently, achieving asymptoti
cally consistent behavior in the sublayer is neither more nor less important for 
unsteady flows than it is for steady flows. 
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As we have seen in preceding chapters, the k-w model with a stress limiter yields 
reasonably accurate separated-flow solutions from incompressible to hypersonic 
flow regimes. Figures 5 . 1 6  underscore and 5 . 1 9  this point. · By contrast, turbu
lence models that use the E equation are generally unreliable for separated flows, 
especially shock-induced separation. Figure 5 . 10, for example, illustrates how 
poorly such models perform for Mach 3 flow into a compression comer. In this 
section, we will take a close look at how well stress-transport models perform 
for several separated flows. 

Because stress-transport models require more computer resources than alge
braic and two-equation models, applications to separated flows have been rare 
until recently. As we will see, results of recent applications tell a familiar story 
regarding the scale-determining equation. In this section, we will focus on in
compressible flow past backward-facing steps and compressible-flow applica
tions including compression comers and shock-wave/boundary-layer interactions -
for a range of Mach numbers. 

As  we proceed through this section, keep in mind that the Stress-w model dif
fers from the k-w model only in the way the Reynolds-stress tensor is computed. 
All common closure coefficients assume precisely the same values. And, like 
the k-w model, no special compressibility modifications to the model have been 
used. Similarly, the models involving the E equation have only slight differences 
from the E equation used in standard k-E models. 

6.7.1 Incompressible Backward-Facing Step 

Focusing first on the incompressible backward-facing step, So et al. (1 988) and 
So and Yuan ( 1 998) have done interesting studies using a variety of turbulence 
models and closure approximations. The 1 988 computations assess the effect of 
various models for the pressure-strain correlation, while the 1 998 study focuses 
on low-Reynolds-number k-E and £.-equation based stress-transport models. 

The So et al. ( 1 988) computations use Chien's (1 982) low-Reynolds number 
version of the E equation. Most importantly, they have used three different models 
for the pressure-strain correlation, viz., the models of Rotta ( 195 1 )  [Model A I ], 
Launder, Reece and Rodi ( 1 975) [Model A2], and Gibson and Younis ( 1 986) 
[Model A4] .  Using the Rotta model, computations have been done with wall 
functions as well [Model H-Al ] .  For reference, their computations also include 
the Chien ( 1 982) low-Reynolds-number k-E model [Model Lk-E] . These models 
differ mainly in their representation of the fast pressure-strain term, with the 
Rotta model ignoring it altogether. The computations simulate the experiments 
of Eaton and Johnston (1 980) in a duct with a large expansion ratio, for which 
the measured reattachment length is 8 step heights. 
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As shown in Figure 6.30, computed reattachment length for all of the com
putations lies between 5 and 6 step heights, so that the result closest to measure
ments differs from the measured value by 25%. All of the models show large 
discrepancies between computed and measured wall pressure, while peak skin 
friction values are as much as 3 times measured values downstrean1 of reattach
ment for the low-Reynolds-number models. In general, the stress-transport model 
skin friction results are as far from measurements as those of the low-Reynolds
number k-E model. Only when wall functions are used with the stress-transport 
model does the computed skin friction lie reasonably close to measured values. 
So et al. note that the smallest discrepancies between computed and measured 
flow properties are obtained with the Rotta pressure-strain model, which omits 
the rapid pressure-strain correlation. That is, the LRR and Gibson-Younis mod
els for the rapid pressure strain appear to yield larger discrepancies between 
computed and measured values. 
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Figure 6.30: Computed and measured skin friction for flow past a backward
facing step: A l =Rotta model; A2=LRR model; A4=Gibson-Younis model; 
H-Al =Rotta model with wall functions; Lk-c=Chien k-E model; •=Eaton and 
Johnston. [From So et al. (1988) Published with permission.} 

Recalling how close to measurements k-w model predictions are for flow past 
a backward-facing step (Section 4. 1 0), the So et al. computations suggest that 
their poor predictions are caused by the E equation. On the one hand, comparison 
of Figures 4.46 and 6.30 shows that for stress-transport model H-Al ,  Cf is very 
similar to k-E model results when wall functions are used. Although the flows are 
a little different, the reattachment length is 25% smaller than measured for both 
cases. On the other hand, using the same low-Reynolds-numbeu equation, Cf for 
stress-transport model AI is very similar to the low-Reynolds-number k-E model 's 
skin friction, except in the reverse-flow region. Despite the latter difference, the 
reattachment length is the same in this case also. Thus, as with two-equation 
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models, a stress-transport model ' s  performance for the backward-facing step is 
intimately linked to the scale-determining equation. This strongly suggests that 
much closer agreement between computed and measured flow properties would 
be obtained with a stress-transport model based on the w equation, such as the 
Stress-w model. 

Figure 6.3 1 shows that the Stress-w model does indeed provide a far more 
acceptable solution for the high-Reynolds-number backward-facing step of Driver 
and Seegmiller ( 1 985). For reference, the Wilcox (2006) k-w model solution is 
also shown. Both numerical solutions have been done on the same 301  x 1 63 
finite-difference mesh. 

Computed and measured flow properties are generally within a few percent. 
The Stress-w model predicts a reattachment length of 6.74 step heights, which 
is 8% longer than the measured length of 6.26 step heights. By comparison, the 
Wilcox (2006) k-w model predicts a reattachment length of 7.07 step heights 
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Figure 6.3 1 :  Computed and measured skin friction and surface pressure for flow 
past a backward-facing step; ReH 37500; Wilcox (2006) Stress-w model; 
- - - Wilcox (2006) k-w model; o Driver-Seegmiller. 

In the more recent study, So and Yuan ( 1 998) compute backstep flow with 
seven low-Reynolds-number k-E models, the four-equation model of Durbin 
( 199 1 ) and three stress-transport models. The flow considered is a relatively 
low-Reynolds-number (5000 based on step height) case studied experimentally 
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by Jovic and Driver ( 1994) and computed with DNS by Le, Moin and Kim 
( 1 997). Overall, the computations are in closer agreement with measurements 
for this flow than those of the high-Reynolds-number Eaton and Johnston ( 1 980) 
case discussed above. The So-Yuan computations show the following: 

• The average difference between the predicted and measured reattachment 
length for the seven k-c models is 9%. For Chien's ( 1 982) model, the 
reattachment length is within 7% of the measured value. Note that this 
model 's reattachment length is 25% shorter than measured for the high· 
Reynolds-number Eaton and Johnson ( 1980) t1ow. 

• Durbin's  four-equation model gives one of the best overall solutions, with 
a reattachment length within 4% of the measured value. As shown by 
Durbin ( 1 995), this model also provides a credible solution for the high
Reynolds-number backstep experiment of Driver and Seegmiller ( 1 985). 

• The three stress-transport models considered predict reattachment lengths 
within 3%, 7% and 1 0% of the measured value. 

It is difficult to draw any finn conclusions from the So-Yuan study as it con
centrates on just one t1ow. Furthermore, the t1ow chosen is one that k-c models 
predict reasonably well, and that doesn't reveal their inherent weakness for this 
type of application. Given their inaccurate predictions for backstep t1ows at 
higher Reynolds numbers, the close agreement is probably a lucky coincidence. 

Figure 6.32 shows that the Stress-w model yields a satisfactory solution for the 
Jovic-Driver low-Reynolds-number backstep t1ow. As with the Driver-Seegmiller 
case above, results obtained with the Wilcox (2006) k-w model are included for 
reference. Based on reattachment length alone, these numerical results are not 
quite as close to measurements as those for the Driver-Seegmiller case. The 
Stress-c..v model predicts a reattachment length of 7 . 1 0  step heights, which is 
1 8% longer than measured. However, the overall differences between theory and 
experiment for most of the t1owtield are generally less than 1 0%. 

It is instructive to observe the close correlation between reattachment length, 
Xr, and the scale-determining equation. 

• High-Re Backstep: €-based stress-transport and two-equation models 
predict X r  appreciably shorter than measured; 

• High-Re Backstep: w-based stress-transport and two-equation models 
predict X r  slightly longer than measured; 

• Low-Re Backstep: �:-based stress-transport and two-equation models pre
dict X r  within a few percent of the measured length; 

• Low-Re Backstep: w-based stress-transport and two-equation models 
predict Xr somewhat longer than measured. 
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Figure 6.32: Computed and measured skin friction and suiface pressure for flow 
past a backward-facing step; ReH 5000; - Wilcox (2006) Stress-w model; 
- - - Wilcox (2006) k-v..1 model; o Jovic-Driver. 

One final observation regarding the performance of the Stress-w model on 
incompressible backward-facing steps is of interest. For both of the cases dis
cussed above, the reattachment length predicted by the Stress-w model is closer 
to the measured length than that of the k-w model. For the high-Re case, using 
the Stress-w model reduces the difference from 1 3% for the Wilcox (2006) k-w 
model to just 8%. For the low-Re case, the Stress-w model 's Xr is 1 8% longer 
than measured compared to 2 1 %  longer for the k-w model. 

6. 7.2 Transonic Flow Over an Axisymmetric Bump 

Subsection 5.8 .5 includes computational results for the Bachalo-Johnson ( 1 979) 
transonic-bump flow with three k-w models and with the Spalart-Allmaras ( 1 992) 
one-equation model . Although the Wilcox (2006) k-w model and the Spalart
Allmaras model predict surface-pressure coefficient, Cp, values within 7% of 
measurements, the predicted shock location lies downstream of the shock in the 
experimental flowfield. While using a stress limiter with Clim 1 removes 
the k-w model 's discrepancy in shock location and brings Cp much closer to 
measured values, the same stress-limiter strength is much too strong for Mach 
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numbers of 3 and higher. An interesting question to pose is whether or not 
the Stress-w model also misses the precise location of the shock for this flow. 
Figure 6.33 provides the answer to this question. Results shown are for an 
EDDY2C (see Appendix C) computation using the same 20 1 x 10 1  point mesh 
as for the k-w model. As shown, the Stress-w model 's shock location and Cp 
distributions lie within 3% of corresponding measurements. 
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Figure 6.33: Comparison of computed and measured surface-pressure coefficient 

for transonic flow past an axisymmetric bump: Wilcox (2006) Stress-w 
model; - - - Wilcox (2006) k-w model; o Bachalo and Johnson. 

6. 7.3 Mach 3 Compression Corners and Reflecting Shocks 

We now consider the three shock-separated turbulent boundary-layer computa
tions discussed in Subsection 5 .8.7. The flows include two planar compression
comer flows and a reflecting-shock case. Figure 6 .34 compares computed and 
measured surface pressure and skin friction using the high-Reynolds-number 
Stress-w model. For reference, computed results for the Wilcox (2006) k-w 
are included. In all cases, EDDY2C has been used with the same 401 x 20 1 
finite-difference grids implemented for the k-w model computations. 

For all three cases, the Stress-w model solution is quite close to the k-w 
model solution, especially the surface pressure. The most noteworthy difference 
between the Stress-w and k-w solutions is in the skin friction downstream of 
reattachment. The values for the Stress-w model are typically 1 5% higher than 
those for the k-w model. This would correspond to a more rapid return to 
equilibrium, which more closely matches measurements. 
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Gerolymos, Sauret and Vallet (2004) have computed these three flows using 
two E-based stress-transport models. The first is the Gerolymos-Vallet (200 1) 
stress-transport model and the second is a "wall-normal-free" version of the 
Launder-Shima ( 1 989) stress-transport model. The terminology wall-normal-free 
(WNF) means free of any closure approximations that involve physical distance 
from a solid boundary. The primary differences between these two models is 
in the treatment of the pressure-strain correlation tensor, llij, and the turbulent
transport tensor, Cij k [see Equations (6.39) and (6.4 1 )]. 

Figure 6.35 compares computed and measured surface pressure and skin 
friction for the Reda-Murphy shock-wave/boundary-layer interaction and Settles' 
24 ° compression comer flow. As shown, the beginning of the pressure rise for 
the Gerolymos et al. (GV RSM) stress-transport model occurs a bit upstream 
of the measured rise for both cases. Computed skin friction downstream of 
reattachment is significantly larger than measured. The steep slope of the CJ 
curve indicates a much more rapid return to equilibrium than is present in the 
experimental flowfields. 

For the Launder et al. (WNF-LSS RSM) stress-transport model, the beginning 
of the pressure rise occurs well downstream of the measured location, which 
would be consistent with a separation bubble about 2/3 the size of the bubble in 
the experiment. Although skin friction is not as large as with the Gerolymos et al. 
model, it still lies well above measured values. The steeper than measured slope 
of the c f curve again indicates an approach to equilibrium that is significantly 
faster than that of the experimental flowfield. 

As noted above, the main difference between these two stress-transport mod
els based on the € equation is in their treatment of the tensors rrij and cij k · 
The treatment of these two tem1s is far more complicated than that used for the 
Stress-w model. By design, the Stress-w model uses the linear Launder, Reece 
and Rodi ( 1 975) closure model for 11ij and an especially simple closure approxi
mation for Cij k based on standard gradient diffusion. The objective in developing 
the model has been to demonstrate how well an w-based stress-transport model 
with an absolute minimum amount of complexity performs for complex turbulent 
flows. The Stress-w model has just 8 closure coefficients, viz., C1 , C2, a, f3o, 
/3* , a-, cr* and O"do , along with two very simple closure functions, ff3 and a-d/a-do 
[see Equations (6.84) - (6.87)]. Note that all except C1 and C2 appear in the 
Wilcox (2006) k-w model. 

In distinct contrast, the Launder-Shima-Sharma model uses a cubic model 
for 11ij and more than double the number of closure coefficients and closure 
functions used for the Stress-w model. Although it is less complex, the Gerolymos 
model uses 4 closure coefficients and 4 closure functions just to model Cijk·  

Comparing the results shown in Figures 6.34 and 6.35 suggests an interesting 
question. How much of the complexity involved in these models is required to 
offset the deficiencies of the E equation? 
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friction for Mach 3 shock-separated flows. [From Gerolymos et a/. (2004) -
Copyright @ AIAA 2004 Used with permission.] 
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6. 7.4 Hypersonic Shock-Separated Flows 

Our final applications are for hypersonic flows. Figure 6.36 compares computed 
and measured surface pressure for the Mach 1 1  shock-wave/boundary-layer in
teraction experimentally documented by Holden ( 1978). The surface is highly 
cooled with a wall to adiabatic-wall temperature ratio of Tw/1"'aw 0.2. The 
EDDY2C computation employed the same 501 x 301 point finite-difference mesh 
that was used for the k-w model computations of Subsection 5 .8.8. Computed 
separation-bubble length for the Stress-w model is 1 .0280, where 00 is the inci
dent boundary-layer thickness just upstream of the interaction. By comparison, 
the separation-bubble length is 1 .5380 for the k-w model, so that the Stress-w 
model solution shows larger differences between computed and measured surface 
pressure. 
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Figure 6.36: Comparison of computed and measured surface pressure for a 
Mach 11 shock-wave/boundary-layer interaction: Wilcox (2006) Stress-w 
model; - - - Wilcox (2006) k-w model; o Holden (1978) 

We conclude with the Mach 7, 35 ° cylinder-flare configuration experimen
tally investigated by Kussoy and Horstman ( 1 989). Like the Mach 1 1  flow above, 
this flow has a highly-cooled surface with Tw /Taw 0.4. Recall that analy
sis of this flow demonstrates the reattachment-point heat-transfer anomaly (see 
Subsection 5.8.9) that plagues two-equation turbulence models. 
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Figure 6.3 7 shows that, like the Wilcox (2006) k-w model, the Stress-w model 
gives a peak surface heat transfer rate, qw, that is 50% higher than the measured 
rate. This is unsurprising for two reasons. First, both models use the Reynolds 
analogy in computing heat transfer. Second, the models differ in the way they 
compute the Reynolds stresses, which are determined from the larger energy
containing eddies. Since heat transfer occurs primarily in the smallest eddies, 
changes in the way the Reynolds stresses are computed should not be expected 
to make an appreciable difference. This is yet another example of how a stress
transport model reflects the strengths and weaknesses of the scale-determining 
equation. 

Pw /Poo qw/qwcxo 
40 ---- -- ------ 40 -- ------ ----

Figure 6.37: Computed and measured surface pressure and heat transfer for 
Mach 7 flow into a 35° axisymmetric compression corner (cylinder-flare ge
ometry): Wilcox (2006) Stress-w model; - - - Wilcox (2006) k-w model; 
o Kussoy-Horstman (1989) 

6.8 Range of Applicability 

The two primary approaches to removing the limitations of the Boussinesq ap
proximation are to use either a nonlinear constitutive relation or a stress
transport model. As discussed in Section 6.2, nonlinear constitutive relations 
offer some advantage over the Boussinesq approximation, most notably for flows 
in which anisotropy of the normal Reynolds stresses is important. Algebraic 
Stress Models provide a straightforward method for accurately predicting ef
fects of streamline curvature and system rotation, although ad hoc corrections to 
standard two-equation models are just as effective. However, nonlinear constitu
tive relations offer no improvement over the Boussinesq approximation for flows 
with sudden changes in mean strain rate. 
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Despite their complexity, stress-transport models have great potential for re
moving shortcomings of the Boussinesq approximation in a natural way. Without 
ad hoc corrections, stress-transport models provide physically realistic predictions 
for flows with curved streamlines, system rotation, sudden changes in mean strain 
rate and secondary motions of the second kind. However, to be completely ob
jective in our assessment, we must also note that in many such applications only 
qualitative agreement between theory and experiment has been obtained. 

Just as older k-equation oriented, one-equation turbulence models share the 
shortcomings and successes of the mixing-length model, stress-transport models 
reflect the strengths and weaknesses of the scale-determining equation used with 
the model . There is an increasing pool of evidence that many of the shortcomings 
of stress-transport models are caused by the scale-determining equation. Results 
obtained for the backward-facing step and shock-separated flows (Section 6.7), 
for example, strongly suggest that predictions of standard stress-transport model s 
can be improved by using the w equation in place of the E equation. This is not 
to say all of the ills of stress-transport models are caused by their use of the E 
equation. Based on DNS results for backstep flows, Pameix et al. ( 1998) show 
that even when the dissipation rate is accurately predicted, current models are 
capable of predicting large discrepancies from measurements. We can reasonably 
infer that this points to deficiencies in modeling of the pressure-strain correlation 
tensor, IIij . 

From a numerical point of view, stress-transport models are at least as dif
ficult to solve as the corresponding two-equation model. Models based on the 
E equation fail to predict a satisfactory law of the wall and require complicated 
viscous damping functions. Correspondingly, such models are generally very 
difficult to integrate. By contrast, models based on the w equation require no 
special viscous corrections, and are much easier to integrate. In particular, the 
Stress-w model usually requires only about 25% to 40% more computing time 
relative to the k-w model. 7 Hence, the scale-determining equation may be even 
more important for stress-transport models than for two-equation models. 

7Reflection of an oblique from a flat surface is an exception for the model. Much smaller 
timesteps are needed with Program EDDY2C to counter realizability violations mainly across the 
reflected shock. For such flows, required computing time can be 2-3 times longer than the time 
needed for the k-w model. 
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Problems 

6.1 The objective of this problem is to derive the modified law of the wall for flow over 
a curved wall according to the k-w model. 

(a) Verify that the dimensionless form of Equations (6.5) to (6.7) in the log layer is 
[with E =  vj(urR) and assuming a-d = 0 and f3 = f3a] :  

* + d 
a- Vr dy+ 

+ d (Jl/y dy+ 
r + dw+ 

Vr dy+ 

= 1 , 

+ + + w = f3ok W - Q k+ 

(b) Assume a solution of the tbrm 

1 -..,.- [1 + wy+ .eny+ + 0(E2 )j "'Y+ " 

f3*K,y+ 

with E « 1 .  Substitute into the equations for k+ and w+ and verify that the 
coefficients b and c are given by 

and Q c =  b 
Q - f3o/ /3* 

NOTE: Use the fact that for the k-w model a-"'2 = (!3a/ /3* -- a)ff, and ignore 
terms proportional to y + relative to terms proportional to y+ .Cny+ .  

(c) Substitute into the momentum equation and verify that 

a + b - c = 1 

(d) Using a = 13/25, f3o = 0.0708, /3* = 9/100, a- = 1/2 and a-* = 3/5, determine 
the numerical values of a, b and c, and show that the modified law of the wall is 

of the form 

where f3 R ::::::; 8. 9. 



374 CHAPTER 6. BEYOND THE BOUSSINESQ APPROXIMATION 

6.2 For incompressible flow, we wish to use Speziale's nonlinear constitutive relation 
with the k-w model. In terms of k-w model parameters, the relation can be written as 

where CD and C E are closure coefficients whose values are to be determined. 

(a) Verity for incompressible boundary layers that 

1 au 
Sxy = Syx � 2" 

ay 
, 

0 

Sxx � -
au 2 

ay 
, 

all other Sij � 0 

all other 

(b) Express the Reynolds-stress components Txy, Txx , Tyy and Tzz in terms of k, Vr, 
(3*, w and aU I ay for incompressible boundary layers . 

(c) Using the stresses derived in part (b), write the log-layer form of the mean-
momentum, k and w equations. Assume that ad = 0 and (3 = {30• 

(d) Assuming a solution of the form aU/ ay = ur I ( KY) and k = constant, verity that 

(e) Verity that 

au 2 

ay 
(3* 2 = w 

u'2 jk = (8 - CD + 8CE )I12 

v'2/k = (8 - Cv - 4CE )I12 

w'2 lk = (8 + 2Cv - 4CE) I12 

(f) Determine the values of Cv and CE that are consistent with the normal Reynolds 
stresses standing in the ratio 

6.3 Verify that in the log layer of an incompressible flat-plate boundary layer, the Wilcox
Rubesin nonlinear constitutive relation [Equation (6. 1 5)] predicts that the normal Reynolds 
stresses stand in the ratio 

HINT: Recall that in the log layer, aU I ay � v1F w. 

6.4 Check the accuracy of Speziale's regularization approximation as quoted in Equa
tion (6.28). To do so, let 17 vary from 0 to 1 and compare the right- and left-hand sides 
of the equation for � = i ,  � and 1.  
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6.5 For incompressible flow in a rectangular duct, the strain rate and rotation tensors are 
approximately 

0 1 au 1 au 0 1 au 1 au - - - -
2 By 2 az 2 By 2 az 

SiJ = 1 au 0 0 and nij = 1 au 0 0 - - -
2 By 2 8y 
1 au 0 0 1 au 0 0 2 ax -2 8x  

Detennine Txy ,  Tx z ,  Ty z and (Tz z - Tyy )  according to the Wilcox-Rubesin nonlinear 
constitutive relation (Equation (6. 1 5)]. 

6.6 Derive the Poisson equation [Equation (6.5 1 )] for the fluctuating pressure. 

6.7 Consider the Launder-Reece-Rodi (LRR) rapid-pressure-strain closure approximation, 
Equation (6.63). 

(a) Verify that aij k! satisfies the symmetry constraints in Equation (6.6 1 ). 

(b) Invoke the constraints of Equation (6.62) and verify that a, (3, rt and v are given 
by Equation (6.64). 

(c) Fonn the tensor product 

and verify Equations (6.65) through (6.67). 

6.8 Consider Lumley's general representation for Ilij in Equation (6.69). Show that the 
LRR pressure-strain model [including AiJ as defmed in Equation (6.58)] is the limiting 
case where all coefficients other than ao , a2 , a7 and ag equal to zero. Also, assuming 
c1 = 1 .8,  determine the values of ao , a2 , a7 and ag that correspond to c2 = 0.4, 0.5 and 
0.6. Assume the flow is incompressible. 

6.9 Suppose we have flow in a coordinate frame rotating with angular velocity n = Ok, 
where k is a unit vector in the z direction. The incompressible Navier-Stokes equation is 

du 2 p + 2pf2 x u = - "Vp - pn x n x x + J.L\l u 
dt 

where x is position vector and d/ dt is the Eulerian derivative. Verify that the Reynolds
stress equation's inertial terms in a two-dimensional flow are as follows: 

d 
at 

Txx 
Txy 
0 

Txy 0 
Tyy 0 
0 Tzz 

+ 
-40Txy 

20 (rxx - Tyy )  
0 

20( Txx - Tyy )  
4f2Txy 

0 

0 
0 
0 

-- . . . 
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6.10 Consider the Launder, Reece and Rodi stress-transport model, Equations (6.73) 
through (6.77). This problem analyzes the model's predicted asymptotic solution for 
homogeneous plane shear, in which 

-

0 s 0 
0 0 0 
0 0 0 

(a) Assuming that Elk � constant as t --. oo, verify that • 

where P = Srxy · 

(b) Neglecting the pressure-echo effect, verify that 

2STxy 
STyy 
STyz 

STyy 
0 
0 

STyz 
0 
0 

, 

0 
STxx 

0 

STxx 0 
2STxy STxz 
STxz 0 

(c) Assuming a solution of the form TiJ = CiJ e>-.t where CiJ is independent of time 
and A is a constant, verify that if Txz and Tyz are initially zero, they are always 

A 

zero, provided jJ(l - & ) > 0. 
(d) Determine Elk and Plk as functions of c.l ,  c€2 and A under the assumption that 

T·  · - C· · e>-.t •J - 1) • 

(e) Using results of Parts (a) - (d), determine u'2 1k, v'2lk and w'2lk as algebraic 
functions of the closure coefficients. HIN T: You can simplify your computations 
somewhat by ftrst writing the equation for TiJ as an equation for TiJ + � k8iJ . 

(f) Using the following two sets of closure coefficient values, compute the numerical 
values of u'2 I k, v'2 I k and w'2 I k. 

1 .  Original LRR: C1 = 1 .5 ,  C2 = 0.4, c€1 = 1 .44, C€2 = 1 .90 
2. Revised LRR: C1 = 1 . 8 , C2 = 0.6, C€1 = 1 .44, Ce2 = 1 .92 

6.11 Consider the Stress-w model, Equations (6.78) through (6.87). In the following 

computations, you can assume cr d = 0 and f3 = f3o. 
(a) State the limiting fonn of the equations for the incompressible, two-dimensional 

log layer. 

(b) Assuming a solution of the form 

dU 
- ""' -
dy 

, 

determine ""· -u' v' I k, u'2 I k, v12 I k and w'2 I k as algebraic functions of the 

closure coefficients. HIN T: All are constant. 

(c) Using the closure coefficient values in Equations (6.83) through (6.87), verify that 

"" �  0 . 40, -u'v' lk � 0.30 and u'2 : v'2 : w'2 � 4.0 : 1 . 9 : 2 .9 .  
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(d) Substituting the results of Part (c) into the last of the equations developed in 
Part (b), show that the shear stress satisfies the following equation. 

(6.127) 

(e) Verify that if we insist upon Txy/k being equal to Bradshaw's constant so that 
,J/F = f3r = 0.3, necessarily 01 and 02 are related by a simple quadratic. Make 

a table of values of 02 as a function for C1 for the range of physically-realistic 
values based on measurements [cf. Equation (6.59)]. 

6.14 Consider the low-Reynolds-number version of the Stress-w model, Equations (6.78) 
through (6.80), (6.82) and (6.109) through (6.114). Modify Program SUBLAY (see Ap
pendix C) as needed to pennit specifying the values of 02 and Rw (see Subroutine 
START). 

(a) With Rw = 22/9, compute the value of the constant in the law of the wall, 0, for 

c2 = 0.40, 0.45, 0.50 and 0.55. 
. 

(b) Leaving all other values unchanged, determine the value of Rw that gives C = 5.50 
for c2 = 0.40, 0.45, 0.50 and 0.55. 

6.15 Using Program MIXER (see Appendix C), compute 6' /6� at Mach 0, 0.5, 1, 2, 3, 4 
and 5 for the Stress-w model. Do your computations using 101 grid points, and exercise 
the program for the Sarkar, Zeman and Wilcox compressibility corrections defined in 

Equations (5.81) through (5.83). Plot your results for 6' /6� and compare to the following 

experimental data compiled by Barone et al. (2006). 

I Me 5' /5� Me 5' /5� Me 5' /5� Me 5' /5� 
0.059 1.000 0.535 0.810 0.691 0.565 0.945 0.489 
0.206 0.985 0.580 0.927 0.720 0.633 0.985 0.400 
0.411 0.973 0.589 0.812 0.795 0.502 0.992 0.464 
0.455 0.817 0.640 0.762 0.825 0.535 1.040 0.518 
0.455 0.965 0.640 0.841 0.838 0.570 1.122 0.474 
0.510 0.971 0.668 0.733 0.860 0.575 1.312 0.436 
0.519 0.957 0.677 0.698 0.862 0.457 1.449 0.442 

6.16 The object of this problem is to compare predictions of the Stress-w model with 

measured properties of a turbulent boundary layer with surface mass injection. The 

experiment to be simulated was conducted by Andersen et al. (1972). Use Program 

EDDYEL, its menu-driven setup utility, Program EDDYBLDATA and the input data 

provided on the companion CD (see Appendix C). Do computations using the high-Re 

and low-Re versions of the Stress-w model. Compare computed skin friction with the 

following measured values. 

I s (ft) ct I I s (ft) ct I I s (ft) CJ I 
0.8462 1.92·10- 3.8376 1.16·10- 6.8224 9.00·10-
1.8368 1.55·10-3 4.8216 1.04·10-3 7.5112 8.50·10-4 
2.8208 1.31·10-3 5.8384 9.70·10-4 
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6.17 The object of this problem is to compare predictions of the Stress-w model with 

measured properties of a turbulent boundary layer with adverse pressure gradient. The ex

periment to be simulated was conducted by Bradshaw [see Coles and Hirst (1969)- Flow 
3300]. Use Program EDDYBL, its menu-driven setup utility, Program EDDYBL..DATA 
and the input data provided on the companion CD (see Appendix C). Do computations 

using the high-Re and low-Re versions of the Stress-w model. Compare computed skin 
friction with the following measured values. 

I s (ft) I Cj II s (ft) I CJ l 
2.5 2.45·10--:r 5.0 1.74·10-" 
3.0 2.17·10-3 6.0 1.61·10-3 
3.5 2.00·10-3 7.0 1.56·10-3 
4.0 1.91·10-3 

6.18 The object of this problem is to compare predictions of the Stress-r...,• model with mea

sured properties of a Mach 2.65 turbulent boundary layer with adverse pressure gradient 

and surface heat transfer. The experiment to be simulated was conducted by Fernando 
and Smits [see Fernholz and Finley (1981)). Use Program EDDYBL, its menu-driven 

setup utility, Program EDDYBL..DATA and the input data provided on the companion 

CD (see Appendix C). Do computations using the high-Re and low-Re versions of the 
Stress-w model . Compare computed skin friction with the following measured values . 

s (m) CJ s (m) CJ J 
1.151 9.92·10- 1.273 9.41·10-4 
1.172 9.96·10-4 1.299 1.01·10-3 
1.197 9.67·10-4 1.324 1.07·10-3 

• 

1.222 9.43·10-4 1.349 1.08·10-3 
1.248 9.46·10-4 1.361 1.04·10-3 

6.19 Compute the Bachalo-Johnson transonic bump flow using the Stress-w model with 

viscous modifications. Use Program EDDY2C, its menu-driven setup utility, Program 

EDDY2CJ)ATA, and the input data provided on the companion CD (see Appendix C). 

(a) You must first run Program EDDYBL to establish flow properties at the upstream 

boundary. To avoid having to adjust the transition point, select the Stress-w model 

"w/o viscous mods." VerifY that the Reynolds number based on momentum thick

ness is 2390. 

(b) Run EDDY2C for the Stress-w model "with viscous mods" and make graphs of 
the "residual" and the separation-point location, Xs I c, as functions of timestep 

number. 

(c) Compare the value of xslc predicted by the low-Re Stress-w model relative to the 

value predicted without viscous modifications, viz., Xs I c = 0.66. 

NOTE: This computation will take about a half hour of CPU time on a 3-GHz Pentium-D 

microcomputer. 
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6.20 Compute Settles' Mach 2.84 flow into a 24° compression comer using the Stress-w 

model with viscous modifications. Use Program EDDY2C, its menu-driven setup util

ity, Program EDDY2C...DATA, and the input data provided on the companion CD (see 
Appendix C). 

(a) You must first run Program EDDYBL to establish flow properties at the upstream 

boundary. After selecting the Stress-w model "with viscous mods," modify the 

supplied input-data file eddybl.dat, using trial and error to adjust the "Maximum 

Arclength" (SSTOP) so that the Reynolds number based on momentum thickness 
is 9.38 · 104. 

(b) Run EDDY2C for the Stress-w model "with viscous mods" and make graphs of 

the "residual" and the length of the separation bubble, (xr- xs)/80, as functions 
of timestep number. 

(c) Compare the value of (xr-xs)/oo predicted by the low-Re Stress-w model relative 

to the value predicted without viscous modifications, viz., (xr - xs) / Oo = 2.13. 

NOTE: This computation will take a little less than an hour of CPU time on a 3-GHz 

Pentium-D microcomputer. 
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Modem turbulence model equations pose special numerical difficulties that must 
be understood in order to obtain reliable numerical solutions, even for boundary
layer flows where the equations are parabolic. For one-equation, two-equation 
and stress-transport models, these difficulties can include stiffness caused by the 
presence of an additional time scale, singular behavior near solid boundaries, 
non-analytical behavior at sharp turbulent/nonturbulent interfaces and sensitivity 
to freestream boundary conditions. This chapter focuses on these difficulties and 

on the solution methods for turbulence-model equations that have evolved. 

7.1 Multiple Time Scales and Stiffness 

One key issue that must be addressed in developing a numerical algorithm for 
fluid-flow problems is that of the physically relevant time scales. Taking proper 
account of these time scales is a necessary condition for numerical accuracy. For 
example, when we deal with non-chemically-reacting laminar flow, there are two 
distinct time scales corresponding to different physical processes. If L and U 

denote characteristic length and velocity for the flowfield, a is sound speed and 

v is kinematic viscosity, the time scales are: 

• Wave propagation, twave,....., LjjU ± ai 

• Molecular diffusion, tdiff ,....., L2 jv 

When we use turbulence-transport equations, we have yet another time scale 
corresponding to the rate of decay of turbulence properties. In terms of the 

specific dissipation rate, W rv Ej k, this time Scale is: 

• Dissipation, tdiss rv 1 I w rv k IE 

381 
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Any n11merical algorithm designed for use with turbulence-transport equations 
should take account of all three of these time scales. 

In terms of the Reynolds number, Re L U L I v, and the Mach number, 
M U I a, the ratio of tdif f to twave is given by 

(7.1) 

Clearl:Y, for high Reynolds number flows the diffusion time scale is much longer 
than the wave-propagation time scale regardless of Mach number. Diffusion 
will generally be important over very short distances such as the thickness of 
a boundary layer, 8, i.e., when L ,......, 8. For specified freestream Mach and 
Reynolds numbers, the relative magnitudes of the diffusion and wave-propagation 
time scales are more-or-less confined to a limited range. This is not the case for 
the dissipation time scale. 

The specific dissipation rate, w, can vary by many orders of magnitude across 
a turbulent boundary layer. Consequently, in the same flow, tdiss can range from 
values much smaller than the other time scales to much larger. This is a crude 
reminder of the physical nature of turbulence, which consists of a wide range of 
frequencies. Thus, regardless of the flow speed, we should expect the dissipation 
time to have a nontrivial impact on numerical algorithms. 

Because of the multiplicity of time scales attending use of turbulence-transport 
equations, especially two-equation models and stress-transport models, we must 
contend with an unpleasant feature known as stiffness. An equation, or system 
of equations, is said to be stiff when there are two or more very different scales 
of the independent variable on which the dependent variables are changing. For 
example, consider the equation 

d2y 
dt2 = lOOy 

The general solution to this equation is 

y(t) Ae-10t + Belot 

If we impose the initial conditions 

and 

the exact solution becomes 

Yexact (t) -lOt e 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

Unfortunately, any roundoff or truncation error in a numerical solution can 

excite the e10t factor, viz., we can inadvertently wind up with 

( ) -lOt lOt Ynurnerical t - e + Ee ' (7.6) 
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No matter how small E is, the second term will eventually dominate the solution. 
The equivalent situation for a system of equations is to have eigenvalues of the 
characteristic equation of very different magnitudes. 

It is easy to see that most turbulence-transport equations hold potential for 
being stiff. The k-t: model is notoriously stiff when some of the commonly used 
viscous damping functions are introduced. Stress-transport models that use the E 
equation are often so stiff as to almost preclude stable numerical solution. Some 
of the difficulty with the E equation occurs because the dissipation time scale 
is a function of both k and E. Transient solution errors in both parameters can 
yield large variations in k/t:, so that the dissipation time scale can assume an 
unrealistic range of values. By contrast, near-wall solutions to models based 
on the w equation have well-defined algebraic solutions approaching a solid 
boundary, and are thus much easier to integrate. 

7.2 Numerical Accuracy Near Boundaries 
Proper treatment of boundary conditions is necessary for all numerical solu
tions, regardless of the equations being solved. Because of the special nature 
of turbulence-transport equations, there are two types of boundary behavior that 
require careful treatment. Specifically, quantities such as dissipation rate, E, and 
specific dissipation rate, w, grow so rapidly approaching a solid boundary that 
they appear to be singular. In fact, w is singular for a perfectly-smooth wall. 
Also, at interfaces between turbulent and non turbulent regions, velocity and other 
properties have nearly discontinuous slopes approaching the interface. Because 
wall-bounded flows typically involve both types of boundaries, accurate numer
ical solutions must account for the special problems presented by this unusual 
solution behavior. 

7 .2. 1 Solid Surfaces 
We know that for a perfectly-smooth wall, the specific dissipation rate varies in 
the sublayer as y-2 approaching the surface (see Subsection 4.6.3). Even if we 
choose to use wall functions to obviate integration through the viscous sublayer, 
analysis of the log layer (see Subsection 4.6.1) shows that both t: and w are 
inversely proportional to distance from the surface. In either case, care must be 
taken to accurately compute derivatives of such functions. 

To illustrate the difficulty imposed by singular behavior approaching a solid 
boundary, consider the function ¢ defined by 

1 
y n' n 1 or 2 (7.7) 
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The exact first and second derivatives are 

d¢ n 
- =--� 
dy yn+l and 

d2¢ n (n + 1) 
dy2 yn+2 (7.8) 

Using central differences on a uniform grid with Yi 
calculation shows that 

jtl.y, a straightforward 

and 

• J 

·2 J 
p -1 

n 

n 

d¢ 
dy exact 

(7.9) 

(7 .1 0) 
exact 

where subscript j denotes the value at y Yi. Table 7.1 lists the errors 
attending use of central differences as a function of tl.y/yi for n = 1 and n 2 . 

• 

Table 7.1: Central-D�{ference Errors for ¢ -n y . 

• tl.y/yj (% Error)n=l (% Error)n=2 J 
2 0.50 33 

..,. 
78 

3 0.33 13 27 
5 0.20 4 9 
7 0.14 2 4 

10 0.10 1 2 

Clearly, significant numerical errors are introduced if the ratio tl.y/yi is 
not smalL If wall functions are used (corresponding to n -- 1 ), regardless of 
how close the grid point nearest the surface lies, nontrivial numerical errors 
in derivatives result for j < 5. Consequently, simply using wall functions as 
effective boundary conditions applied at the first grid point above the surface is 
unsatisfactory. Rather, the value for w or E should be specified for all points 
below j 4 (at a minimum) to insure numerical accuracy. This is undoubtedly 
the primary reason why most researchers find their numerical solutions to be 
sensitive to near-wall grid-point spacing when they use wall functions. As an 
alternat ive, a relatively large cell can be used next to the surface, so that for 
example, Y1 0, Y2 tl.y, Y3 1. 2tl.y, etc. By using the Rubel-Melnik ( 1984) 
transformation, Program DEFECT (see Appendix C) automatically generates 
such a grid. 

When the k-w or Stress-w model is integrated through the viscous sublayer 
for a perfectly-smooth surface (corresponding to n - 2), there is no practical 
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way to avoid having !:l.y / y2 rv 1. The exact solution to the w equation in the 
viscous sublayer is 

6vw 

oY 
(7.11) 

If we simply use the value of w according to Equation (7.11) at the first grid 
point above the surface, Table 7.1 shows that the molecular diffusion term will 
be in error by 78%. This, in tum, will increase values of w at larger values of y. 
Recall that the surface value of w has a strong effect on the additive constant, C, 
in the law of the wall (see Subsection 4.7.2). Thus, computing too large a value 
of w near the surface will distort the velocity profile throughout the sublayer and 
into the log layer. That is, numerically inaccurate near-wall w values can distort 
the entire boundary-layer solution. 

The remedy that has proven very effective for eliminating this numerical er
ror is to use Equation (7 .11) for the first 7 to 10 grid points above the surface. 
Of course, these grid points must lie below y+ 2. 5 since Equation (7 .11) 
is not valid above this point. This procedure has been used in Programs PIPE, 
SUBLAY and EDDYBL (see Appendix C). This procedure is easy to implement 
for boundary-layer programs and simple one-dimensional time-marching applica
tions. However, it is very inconvenient for general flow solvers, especially when 
unstructured grids are used. 

An alternative procedure for accurately computing near-surface behavior of 
w is to use the rough-wall boundary condition. As shown in Subsection 4.7.2 
for the k-w model and Subsection 6.6.1 for the Stress-w model, 

where 

2 
w = UT SR 

Vw 
at y 0 

The quantity kt urks/vw is the scaled surface-roughness height. 

(7.12) 

(7.13) 

In order to simulate a smooth surface, we simply require that kt be smaller 
than 5. Then, combining Equations (7.12) and (7.13), we arrive at the slightly

rough-surface boundary condition on w, viz., 

40000vw 
w = ---=---p s 

at (7 .14) 

It is important to select a small enough value of ks to insure that kJ < 5. If too 
large a value is selected, the skin friction values will be larger than smooth-wall 
values. 

As a final comment, the near-wall solution to the w equation for a rough wall 
is given by 

y+ < 2.5 (7 .15) 
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where Ww is the surface value of w. An important test for numerical accuracy 
of any finite-difference program implementing the w equation is to verify that 
solutions match either Equation (7 .11) or (7 .15). If the program fails to accurately 
reproduce the near-wall w variation, the program is unlikely to yield accurate 
results. 

For smooth-surface applications, Menter ( 1992c) proposes an alternative to 
the slightly-rough-surface boundary condition. In Menter's approach, the surface 
value of w depends upon the distance of the first grid point above the surface, 
D..y2, according to 

W= at (7.16) 

where N is a constant. Comparison with Equation (7.14) shows that this corre
sponds to setting the surface-roughness height according to 

40000vw N Vw k+ 200D..yi 
k'; (D..y2)2 s N 

(7.17) 

Choosing- N 1600, for example, means that whenever the grid is such that 
D..y2 < 1, the effective surface-roughness height will be less than 5. This, of 
course, corresponds to a hydraulically-smooth surface. 

The advantage of Menter's method for smooth surfaces is simple. The solu7 
tion is guaranteed to have sufficiently small ks to achieve hydraulic smoothness. 
The only disadvantage is that the boundary condition for w is grid dependent, 
which complicates the task of determining grid independence of the solution. 
However, since the turbulenceMmodel solution is more-or-less unaffected by de
creasing kt below 5, the problem is minor. 

Rapid variation of the dependent variable is not the only potential source of 
numerical error near solid boundaries. Another serious consideration is round
off error resulting from the relatively small difference between two numbers 
of comparable magnitude. This problem is frequently encountered with low
Reynolds-number k-E models. For example, damping functions such as 

and f 1 _ e-0.0115y+ 
1-t (7 .18) 

appear in the Lam-Brernhorst ( 1981) and Chien (1982) models. Approaching 
the surface, desired asymptotic behavior depends upon accurate values of these 
damping functions. If single-precision accuracy is used, it is advisable to use 
Taylor-series expansions for the damping functions close to the surface. For 
example, Chien's f 1-t can be computed according to 

1 _ e-0.0115y+ 
' 

0.0115y+' 
y+ > 0.01 
y+ < 0.01 

(7.19) 

This procedure is used in Program EDDYBL (see Appendix C) to insure numer
ically accurate solutions. 
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7 .2.2 Turbulent/Non turbulent Interfaces 

387 

More often than not, turbulence-model equations that are in general usage appear 
to predict sharp interfaces between turbulent and nonturbulent regions, i.e., in
terfaces where discontinuities in derivatives of flow properties occur at the edge 
of the shear layer. As noted in earlier chapters, these interfaces bear no relation 
to the physical turbulent/nonturbulent interfaces that actually fluctuate in time 
and have smooth Reynolds-averaged properties. The mixing-length model, for 
example, exhibits a sharp interface for the far wake (see Subsection 3.3.1). That 
is, the predicted velocity profile is 

U(x, y) = Uoo-1.38 D 1-(y/8)312 2
, y<8 px (7.20) 

where U 00 is freestream velocity, D is drag per unit width, p is density, y is 
distance from the centerline and 8 is the half-width of the wake. Clearly, all 
derivatives of U above a2U jay2 are discontinuous at y 8. Such a solution is 
called a weak solution to the differential equation. 

By definition [see Courant and Hilbert (1966)], a weak solution to a partial 
differential equation 

0 (7.21) 

satisfies the following conditions. 

1. v,(x, y) is piecewise continuous and has piecewise continuous first deriva
tives in two adjacent domains, R1 and R2. 

2. £[u] 0 in R1 and R2. 

3. For any test function cp(x, y) that is differentiable to all orders and that 
is identically zero outside of R1 and R2, the following integral over the 
combined region R R1 U R2 must be satisfied. 

= 0 (7 .22) 
R 

A similar result holds for a system of equations. Clearly, Equation (7.22) can be 
rewritten as 

R 

a( ¢P) + ____:a(_c/JQ_) ax ay 
dxdy- aP aQ ¢ a + a + s dxdy = o (7.23) 

R X y 
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The second integral vanishes since P, Q and S satisfy the differential equation in 
both R1 and R2. Then, using Gauss' theorem, if r is the curve of discontinuity 
that divides R1 and R2 and n (nx, ny) is the unit normal tor, there follows: 

r 
¢ ([P]nx + [Q]ny) ds 0 (7.24) 

The symbols [P] and [Q] denote the jumps in P and Q across r. Since the 
function rp is arbitrary, we can thus conclude that the jump condition across the 
surface of discontinuity is given by 

[P]nx + [Q]ny 0 (7.25) 

For example, in the case of the far-wake solution given by the mixing-length 
model, we have P U00U, Q - (ao8Ujay)2 and S 0. Inspection of 
Equation (7 .20) shows that the jumps in P and Q are both zero, corresponding 
to the fact that the discontinuity appears in the second derivative rather than the 
first. 

The occurrence of weak solutions causes problems on at least two counts. 
First, the jump condition is not unique. For example, if Q can be written as a 
function of P, we can always multiply Equation (7 .21) by an arbitrary function 
'lj;(P), and rearrange as follows: 

where 

oF ac 
8 + -8 + S'lj; 0 :r y 

'lj;(P) dP and G= 

The jump condition then becomes 

(7.26) 

'lj;(P)Q' (P) dP (7.27) 

(7.28) 

In other words, we can have any jump condition we want (and don't want!). 
This means we have no guarantee that our solution is unique. 

The second difficulty posed by the presence of weak solutions has an adverse 
effect on accuracy and convergence of numerical-solution methods. For example, 
a central-difference approximation for a first derivative is second-order accurate 
provided the function of interest is twice differentiable. However, if the function 
has discontinuous first or second derivative, the accuracy of the central-difference 
approximation becomes indeterminate. Maintaining second-order accuracy is 
then possible only if we know the location of the curve of discontinuity in 
advance. For a hyperbolic equation, this curve is a characteristic curve so that 
the method of characteristics, for example, can provide a high degree of accuracy 
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in the vicinity of such discontinuities. Since we don't know the location of the 
characteristics a priori in standard finite-difference computations, accuracy is 
suspect when the equations have weak solutions. 

One-equation models have problems similar to the mixing-length model near 
turbulent/nonturbulent interfaces. Spalart and Allmaras (1992), for example, 
demonstrate existence of weak solutions to their one-equation model at such inter
faces. Saftman ( 1970) was the first to illustrate weak solutions for a two-equation 
model. He discusses the nature of solutions to his k-w2 model approaching a 
turbulent/nonturbulent interface. In fact, he builds in weak-solution behavior by 
choosing his closure coefficients to insure that approaching the interface from 
within the turbulent region, the streamwise velocity and turbulence length scale 
vary as 

Ue - U ex (6- y) and = k112 jw ex constant as y- (7.29) 

where the interface lies at y 8. Vollmers and Rotta (1977) discuss solution 
behavior near a turbulent/nonturbulent interface for their k-k£ model, while Rubel 
and Melnik (1984) perform a similar analysis for the k-E model. Cazalbou, 
Spalart and Bradshaw (1994) confirm existence of weak solutions for most k-E, 
k-kf! and k-w models (while demonstrating that there are parametric ranges of 
the closure coefficients where regular solutions exist). Finally, inspection of the 
k-E model free shear flow velocity profiles [Figures 4.8 - 4.12] illustrates the 
nonanalytic behavior at the edge of the shear layer. 

Rubel and Melnik (1984) offer an interesting solution for thin shear layers 
that effectively maps the turbulent/non turbulent interface to infinity and implicitly 
clusters grid points near the interface. Their transformation consists of introduc
ing a new independent variable, �, defined in terms of the normal distance, y, 
by 

d� = dy 
or 

d 
d� 

d 
VT dy (7.30) 

where v7 is kinematic eddy viscosity. The Rubel-Melnik transfonnation, which 
is useful primarily for self-similar flows, improves numerical accuracy because 
the edge of the shear layer that occurs at a finite value of y moves to infinity 
in terms of the transformed independent variable � (provided vT 0 in the 
freestream). Since vT 0, the transformation produces fine resolution near 
the interface. For example, if the freestream velocity, Ue, is constant, close to 
the shear-layer edge, convection balances turbulent diffusion in the streamwise 
momentum equation. Hence, 

vdu = d 
dy dy 

dU 
VT dy (7 .31) 

where V is the entrainment velocity, which must also be constant in order to 
satisfy continuity. Since shear layers grow in thickness, necessarily V < 0 . 

• 
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Multiplying both sides of Equation (7 .31) by vT and using Equation (7 .30), we 
arrive at 

(7.32) 

for which the solution is 
(7.33) 

where U is a constant of integration. 
Using the Rubel-Melnik transformation, it is a straightforward matter to de

termine the nature of solutions to turbulence-model equations approaching a tur
bulent/nonturbulent interface. Applying the transformation to the k-E model, for 
example, we find 

(7.34) 

dE E dU 2 1 d2E v df. eEl k df. -c€2CJ-LkE + ;: df.2 (7.35) 

Provided the closure coefficients O"k and a-"- are both less than 2, the production 
and dissipation terms are negligible in both equations. The solution approaching 
the interface is 

(7.36) 

where X: and £ are integration constants. Thus, the eddy viscosity is 

K2 
, 

vT ,....., CJ.L� e(2uk-u,)V� 
£ (7.37) 

Finally, substituting Equation (7 .3 7) into Equation (7 .30) and integrating yields 

ev� ex (1 - yj8)(2uk-u,)-1 
(7.38) 

So, the solution to the k-E model equations approaching a turbulent/nonturbulent 
interface from the turbulent side behaves according to 

Ue - U  

k 

U( 1- yj8)(2uk-CJ,)-l 

K(1-yj8)uk(2uk-u,)-1 

€ £(1 _ yj8)u,(2u,.,-u,)-1 
as y---+ 

Using the standard values O"k 1.0 and a-"- 1.3, the k-E model predicts 

Ue -U 
k 

U( 1- y/8)10/7 

K(1-y/8)10/7 

€ £(1- y/8)13/7 
as y-

(7.39) 

(7.40) 
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A similar analysis for the k-w model with cross diffusion included (but no 
stress limiter) shows that the asymptotic behavior of U, k and w is given by 

Ue - U  
k 

U(l- yj6)nu 

JC(l - yj6y�k 

W(l- yj8)nw 

as y- (7.41) 

w 

where U, }( and W are integration constants and the three exponents are1 

a a* * 
a-a*+ ado ' ' a-a*+ ado 

a -ado 
(7.42) a-a*+ ado 

In order for the solution to give U Ue, k 0 and w 0 as we approach 
the turbulent/nonturbulent interface from the turbulent side, all three exponents in 
Equations (7 .42) must be positive. This is true provided the closure coefficients 
a, a* and a do  satisfy the following constraints. 

* ado> a -a and * a >ado (7.43) 

These are identical to the constraints deduced by Lele (1985) in analyzing a 
turbulent front (see Subsections 4.5.3 and 4.5.4). Table 7.2 lists the values of 
the exponents for several k-w models, each having unique behavior. 

Table 7.2: Turbulent/Nonturbulent Interface Exponents for k-w Models. 

I Model 

r Hellsten (2005) 1.000 1.100 0.400 0.300 3.333 3.333 2.333 • 
Kok (2000) 0.500 0.667 0.500 0.333 1.000 1.500 0.500 
Menter (1992c) 0.856 1.000 1.712 1.568 0.546 0.546 -0.454 
Wilcox (2006) 0.500 0.600 0.125 0.025 20 20 19 

1. Hellsten's model features continuous second derivatives for U, k and w, so 
that its weak-solution behavior should be of no consequence in a second
order accurate numerical solution. 

2. Kok's model has classic weak-solution behavior with discontinuities in the 
slope of U and w. 

3. Because Menter's model fails to satisfy the second condition of Equa-
tion (7.43), the solution for w approaches oo as y 6. 

4. Wilcox's model is analy1ic approaching the interface so that it does not 
have nonphysical weak-solution behavior. 

I With a stress limiter included (see problems section), nk and nw are unchanged, but the solution 
for the velocity is such that nu = nk · 

• 
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Hellsten makes the case for choosing the values of the model's closure coef
ficients based on achieving smooth solution behavior at a turbulent/nonturbulent 
interface. Part of Hellsten's arguments include a claim that in order to achieve 
such behavior it is necessary to have u* > 1. Since the Wilcox (2006) k-w model 
has a completely analytical solution at such an interface while having u* < 1, a 
closer look is in order. 
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Figure 7.1: Computed and measured velocity defect near the boundary-layer 
edge for a.flat-plate boundary layer using three k-w models: Wilcox (2006); 
- - - Kok (2000); · · · Hellsten (2005); o Klebano.ff (1955); D Wieghardt and 
Tillman (1951); D. Winter and Gaudet (1973). 

Figure 7.1 compares computed and measured [Klebanoff (1955), Wieghardt 
and Tillman (1951) and Winter and Gaudet (1973)] velocity profiles in the im
mediate vicinity of the boundary-layer edge for a constant-pressure boundary 
layer. Results for the Wilcox model and the Kok model were obtained from 
Program DEFECT (see Appendix C), which is extremely accurate at the turbu
lent/nonturbulent interface. The Hellsten-model profile is from Hellsten (2005). 
Hellsten presents a similar graph showing the linear approach of Kok's velocity 
profile and the discontinuity in slope at the interface. By contrast, both the Hell
sten and Wilcox models exhibit a smooth approach to freestream values, with 
both curves falling within experimental-data scatter. 

The apparent contradiction in Hellsten's claim regarding the minimum value 
of a* needed to achieve smooth solutions near a turbulent/nonturbulent interface 
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is easily resolved. Inspection of Figure 7.1 shows that below y j <5 � 0. 95 all 
three velocity profiles are very nearly linear functions of yj<S. The region in 
which the asymptotic solution given in Equations (7.41) and (7.42) is valid lies 
well within the upper 1%-5% of the boundary layer, depending on the precise 
values of nu, nk and nw. Consequently, on the scale shown in the graph, it 
is difficult to discern much difference between the solutions for the Hellsten 
(2005) model and the Wilcox (2006) model. As noted above, both models have 
continuous second derivatives (and higher) approaching the interface and should 
be expected to cause no troublesome numerical issues to arise. 

The solution for the Wilcox (1988a) k-w model is a quite a bit more com
plicated. This model has cr - cr* 1/2 and there is no cross-diffusion tenn 
so that CTdo -- 0. For this model, only the dissipation terms are negligible. The 
production term in the transformed k equation yields a secular term, which com
plicates the solution. That is, the approximate transformed equations for k and 
w assume the following fotm. 

(7.44) 

(7.45) 

The solution for k and w is 

(7.46) 

where W is an integration constant. Computing the eddy viscosity and substi
tuting into Equation (7 .30), we arrive at 

(7.47) 

Integrating by parts, we can approximate the limiting form of the integral for 
� co as follows. 

2W 

NGw, we must solve this equation for � as a function of <5 - y. To do this, 
let 

2W 
'rJ - U2 ( <5 - y) (7.49) 

Then, Equation (7 .48) simplifies to 

(7.50) 
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This equation can be solved fore as a function of r, by assuming 

where ¢(ry) is a 
corresponds to r, 

function to be determined. In the limit e 
0, the approximate solution for ¢( r,) is 

¢(77) "' -(1 + a)fn 
fnr, 
2V 

With a bit more algebra, there follows 

2V 

fnr, 

(1+0!)/2 

(7 .51) 

oo, which 

(7.52) 

(7.53) 

Thus, for the Wilcox (1988a) k-w model approaching a turbulent/nonturbulent 
interface from within the turbulent region, we have 

Ue - U  
k 

w 

u.J>.. 
-KAfnA 

W(-fnA)-0! 

(1- yfo) 
[ £n(l- yjo)]l+O! 

as y- (7.54) 

Clearly, w approaches zero very slowly from the turbulent side as compared 
to the variation of Ejk rv (o - y)3l7 predicted by the k-E model. Also, the 
velocity profile has discontinuous first derivative at the shear-layer edge, or more 
generally, at any turbulent/nonturbulent interface. 

Wilcox (1998) has verified that the asymptotic behavior predicted in Equa
tions (7.54) is consistent with results of numerical computations. Figure 7.2 
compares numerical solutions with Equation (7.54). The computations are for 
an incompressible flat-plate boundary layer, and have been done using Program 
EDDYBL (see Appendix C) with two finite-difference grids. The first grid has 
140 points normal to the surface, while the second grid has 289 points. As 
shown, the 289-point solution matches the closed-form solution to within 3% of 
scale for U, k and w. The largest discrepancies are present for points very close 
to the interface. This is true because the computation has a nonzero value for w 
in the freestream, while the closed-form solution is strictly valid for w 0 in 
the freestream. Because of the coarser resolution, the 140-point solution shows 
slightly larger differences, again mainly for points closest to the interface. Re
sults shown clearly indicate that the numerical solution is consistent with the 
weak-s()lution. 
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Figure 7.2: Velocity, k and w profiles near a turbulent/nonturbulent interface, 
Wilcox (1988a) k-w model: o 140 points; • 2 89 points; Equation (7.5 4). 

7 .2.3 Sensitivity to Freestream Boundary Conditions 
Usually it is more convenient to assign small nonzero values to k and other 
turbulence parameters in the freestream, especially when the parameter appears 
in the denominator of the eddy viscosity. Cazalbou, Spalart and Bradshaw (1994) 
show that when this is done in boundary-layer computations with the k-E model, 
the weak solution prevails below the interface. Small gradients in k and E appear 
above the interface that yield an asymptotic approach to the prescribed freestream 
values. There is "no significant influence on the predicted flow." 

By contrast, Menter (1992a) shows that for the far wake, in which the entrain
ment velocity increases in magnitude linearly with distance from the centerline, 
the Wilcox (1988a) k-w model predicts that k and w decay exponentially with 
distance squared. However, they decay at the same rate so that the eddy vis
cosity remains constant. As a consequence, consistent with results presented 
in Section 4.5, the freestream value of w has a nontrivial effect on the solu
tion. Menter indicates a smaller effect on boundary layers, primarily because of 
the large values of w prevailing near the surface. The behavior of w in Equa
tion (7.54) is consistent with Menter's observation that the Wilcox (1988a) k-w 
model solutions have discontinuous derivatives at the shear layer edge. However, 
the discontinuity in dw / dy would probably be difficult to detect. 

The Wilcox (2006) k-w model is far less sensitive to the freestream value of 
w than its predecessors. There is nevertheless some sensitivity [ cf. Figure 4.13]. 
However, as long as the freestream value of w is less than 1% of the maximum 
value in a turbulent shear layer, the sensitivity is of little consequence. 

Studies have been published [ cf. Bardina et al. (1997)] where the freestream 
value of w has been set to very large values. With an extremely large freestream 
w, any k-w model solution for many flows, especially free shear flows, will 
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be grossly distorted. This type of analysis is very misleading because having 
freestream values of w more than a percent or so of the maximum value in the 
turbulent region is physically incorrect. What w quantifies is the vorticity of the 
energy containing eddies. Assigning huge values of w in the freestream would 
imply that there is significant fluctuating vorticity above the turbulent region, 
which is absurd. 

CJ /CJ0 

2.0 

1.5 

1.0 

0.5 

0.0 
0.000 0.005 0.010 0.015 

f2oo/f2o (%) 

Figure 7.3: Effect of freestream vorticity on an incompressible, laminar flat-plate 
boundary later. 

As an analogy, consider the laminar boundary layer with zero pressure gra
dient. The boundary-layer equations admit a similarity solution, viz. , the Blasius 
solution. Imagine that, rather than imposing the freestream boundary condition 
on the velocity, we choose to specifY the freestream value of the vorticity. For 
zero freestream vorticity, the solution is identical to the Blasius solution. Fig
ure 7.3 shows how the skin friction varies with the freestream vorticity, Doo. 
There is significant distortion when 000 exceeds one thousandth of a percent 
(0.00 1 %) of the peak vorticity, 00, in the boundary layer. How different is this 
from selecting a physically unrealistic freestream boundary condition on the vor
ticity of the energy-containing eddies with the k-w model? We can reasonably 
conclude the following. 

The same logic that would cite the sensitivity to a freestream value of w 

that exceeds 1% of the peak value in the turbulent region as a flaw in the 

turbulence model would conclude that Prandtl 's boundary-layer equations are 
fundamentally flawed for the same reason! 
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7.2.4 Interface Layer 

397 

In principle, solutions with discontinuous derivatives will not occur if molecular 
viscosity is included in the diffusion terms of the equations of motion. As shown 
by Saffman (1970), there is a thin viscous-interface layer of thickness 

(7 .55) 

in which the discontinuities are resolved. This is a singular-perturbation problem 
in the limit IVIbvdv oo, and the weak solution discussed above is the outer 
solution. The inner solution holds in the viscous-interface layer. For example, 
in the interface layer, Saffinan's equations simplify to 

dU d k dU v dy v+ dy dy w 

vdk d *k dk v+a (7.56) dy dy dy w 
dw2 d k dw2 

v dy v+a dy dy w 

These equations must be solved subject to the following boundary conditions, 
which correspond to formal matching of the solutions that hold on each side of 
the turbulent/nonturbulent interface: 

Ue - U--+U(b - y), k- as IVI(b - y) 
v 

and 

Ue - U- 0, k- 0, w--+ 0 as IVI(b - y) --+ - 00 
v 

As can be easily verified, for a a* 1/2, the solution is given by 

UIVI3 w2 
Ue -U K_2v 1 + V2 w/Kv 

k V2w2 
K 

b-y !VIw 2v V2w 
K 

+ 
IV/Rn Kv 

--+ 00 
(7.57) 

(7.58) 

(7.59) 

In practice, finite-difference grids are never sufficiently fine to resolve the 
viscous-interface layer. Generally, grid points are packed close to the surface to 
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permit accurate resolution of the sublayer. Hence, even when molecular viscosity 
is included in a typical finite-difference computation, turbulent/nonturbulent in
terfaces are not sufficiently resolved. As a consequence, the interfaces are sharp, 
and the weak solutions generally prevail. However, truncation error, numerical 
diffusion and dissipation will generally yield diffused solutions close to the in
terfaces. The most significant numerical problem typically encountered is the 
appearance of nonphysical negative values of k and/or other nonnally positive 
turbulence parameters such as w, € and e. 

For self-similar flows such as the far wake, mixing layer, jet and defect layer, 
the Rubel-Melnik transfmmation cures the problem by mapping the interface to 
oo. Programs WAKE, MIXER, JET and DEFECT (see Appendix C) all use 
this transfmmation. In addition to eliminating difficulties associated with the 
turbulent/nonturbulent interface, the transformation linearizes the first and second 
derivative terms in the equations. This linearization tends to improve the rate of 
convergence of most numerical methods. The only shortcoming of the method 
is its sensitivity to the location of "oo." Using too large or too small a value of 
�max (the farfield value of �) can impede convergence of the numerical solution. 

In general finite-difference computations, for which the Rubel-Melnik trans
formation is impractical, the correct jump condition will be obtained provided the 
diffusion terms in all equations are differenced in a conservative manner. For the 
same reasons, we use conservative differencing for the Navier-Stokes equation 
to guarantee that the exact shock relations are satisfied across a shock wave in a 
finite-difference computation. Program EDDYBL (see Appendix C), for exam
ple, uses conservative differencing for diffusion terms and rarely ever encoun
ters numerical difficulties attending the presence of sharp turbulent/nonturbulent 
interfaces. 

For nonzero freestream values of k, etc., some researchers prefer zero-gradient 
boundary conditions at a boundary-layer edge. While such conditions are clean 
from a theoretical point of view, they are undesirable from a numerical point of 
view. Almost universally, convergence of iterative schemes is much slower with 
zero-gradient (Neumann-type) conditions than with directly-specified (Dirichlet
type) conditions. 

In order to resolve this apparent dilemma, we can appeal directly to the equa
tions of motion. Beyond the boundary-layer edge, we expect to have vanishing 
normal gradients so that the equations for k and w simplify to the following: 

U dke (3* k e dx 
- We e 

U dwe -(3 w2 e dx o e 

(7.60) 

(7.61) 

where subscript e denotes the value at the boundary-layer edge. The solution to 
Equations (7.60) and (7.61) can be obtained by simple quadrature, independent 
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of integrating the equations of motion through the boundary layer. Once ke and 
We are determined from Equations (7.60) and (7.61), it is then possible to specify 
Dirichlet-type boundary conditions that guarantee zero normal gradients. Clearly, 
the same procedure can be used for any turbulence model. Program EDDYBL 
(see Appendix C) uses this procedure. 

7.3 Parabolic Marching Methods 
In general, numerical methods for solving parabolic systems of equations such as 
the boundary-layer equations are unconditionally stable. A second-order accurate 
scheme like the Blottner (1974) variable-grid method, for example, involves in
version of a tridiagonal matrix. If the matrix is diagonally dominant, the scheme 
will run stably with arbitrarily large streamwise stepsize, .6.x. Turbulent bound
ary layer computations using algebraic models often run with .6.x / c5 between 
1 and 10, where 8 is boundary-layer thickness. By contrast, early experience 
with two-equation models indicated that much smaller steps must be taken. Ras
togi and Rodi (1978) found that their three-dimensional boundary-layer program 
based on the Jones-Launder (1972) k-E model required initial steps of about 
8/100, and that ultimately .6.x could not exceed 8/2. Similar results hold for 
models based on the w equation. 

· Wilcox (1981b) found that the problem stems from a loss of diagonal dom-
• 

inance caused by the production terms in the turbulence-model equations. To 
illustrate the problem's essence, consider the k-w model's turbulence kinetic 
energy equation for an incompressible two-dimensional boundary layer, viz., 

( * 
) 

ak 
Z/ + O" vr ay (7.62) 

The following analysis is based on the Blottner variable-grid method, which 
is the scheme implemented in Program EDDYBL (see Appendix C). This al
gorithm uses a three-point forward difference formula [Adams-Bashforth see 
Roache (1998a)] in the streamwise direction, central differencing for the normal 
convection term, and conservative differencing for the diffusion terms. Hence, 
discretization approximations for all except the source terms are as follows: 

a 
ay 

uak_ . 
ax 

u 
.6.x (3krn+1,n-4krn,n + krn-1,n) 

v ak v 
ay =· 2.6.y (km+l ,n+1 - krn+1,n-1) 

(7.63) 

(7.64) 

( 
* 

) 
ak 

l/ + 0" VT ay 
. v+ (krn+1,n+1- krn+1,n)-v-(krn+1,n - krn+1,n-1) 

(.6.y)2 
(7.65) 
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where km,n denotes the value of k at x Xm and y Yn, and !:J.y denotes 
the vertical distance between grid points. Unsubscripted quantities are assumed 
known during the typically iterative solution procedure. Also, the quantity v
denotes the value of (v +a* Vr) midway between Yn-1 and Yn, while v+ denotes 
the value midway between Yn and Yn+l· For simplicity, we assume points 
are equally spaced in both the x and y directions, so that the grid consists of 
rectangular cells. Figure 7.4 shows the finite-difference molecule. 

n 

m-1 m m+l 

Figure 7.4: Finite-difference molecule for Blattner's variable-grid method. 

Turning to the source terms, the simplest second-order accurate discretization • • • 
approxtmatton ts 

w w 
(7.66) 

where the quantity in brackets is also evaluated at (m + 1, n) using values ex
trapolated from (m, n) and (m - 1, n). Substituting Equations (7.63) - (7.66) 
into Equation (7 .62) and regrouping terms leads to a tridiagonal matrix system 
as follows: 

where An, En, Cn and Dn are defined by 

v 
2f::J.y (!:J.y)2 ' 

w 

Now, in order to have a diagonally dominant system, the condition 

(7.67) 

(7.68) 

(7.69) 

(7.70) 
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must be satisfied. Substituting Equations (7 .68) - (7 .69) into Equation (7. 70) 
yields the following condition. 

(7. 71) 

If dissipation exceeds production, so that (3*w > (8Uj{)y)2 jw, Equation (7.71) 
is satisfied so long as we march in the direction of flow (i.e., so long as U and 
.6.x are of the same sign). The system is then said to be unconditionally stable. 

When production exceeds dissipation, we have the following limit on stepsize. 

3wU .6.x � ( .6.x )theory = -:------=----=(8Uj8y)2 - f3*w2 

Hence, the scheme is conditionally stable, subject to Equation (7.72). 
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(7.72) 

Figure 7.5: Theoretical and empirically determined stepsize threshold for a flat
plate boundary layer. [From Wilcox (1981b) Copyright© AIAA 1981 -
Used with permission.} 

To demonstrate the validity of Equation (7.72), Wilcox (1981b) presents com
puted results for an incompressible flat-plate boundary layer using the Wilcox
Rubesin (1980) k-w2 model. At a plate-length Reynolds number, Rex, of 
1.2 . 106, stable computation is found empirically to be possible provided the 
Reynolds number based on .6.x satisfies Ret:;.x < 2.2 · 104, which corresponds 
to !::..x/6 1.15. Figure 7.5 shows Ret:;.x as predicted by Equation (7.72) 
throughout the boundary layer. The minimum value of Ret:;.x according to Equa
tion (7. 72) is 1.9 ·104 and occurs at yj o · 0.012. This close agreement verifies 







404 CHAPTER 7. NUMERICAL CONSIDERATIONS 

of turbulence-model source terms on explicit and implicit methods, this section 

presents a brief overview of these methods. For more complete details see a gen

eral text on Computational Fluid Dynamics such as Peyret and Taylor (1983), 

Anderson et al. (1984), Minkowycz et al. (1988), Ferziger and Perle (1996) or 

Roache (1998a). 
The simplest time-marching schemes are explicit methods, such as the 

DuFort-Frankel (1953), Godunov (1959), Lax-Wendroff (1960) and MacCor

mack (1969) methods. Most explicit schemes were developed prior to 1970. 

In an explicit scheme, the solution at time tn+I depends only on past history, 

i.e., the solution at time tn. For example, consider the one-dimensional wave 
equation: 

ak 
u

ak 
0 

at + ax ' 
U>O (7.80) 

where k is a flow property, U is velocity, t is time and x is streamwise direction. 
Letting kj denote k(xi, tn), we approximate akjat with a forward-difference 
approximation so that 

ak kn+l- kn 
· 

. 1 J + O(�t) at �t (7 .81) 

' 

where �t tn+l - tn. For simplicity, consider simple upwind differencing in 

which we approximate akjax according to 

(7 .82) 

Using these discretization approximations, we arrive at the following first-order 
accurate difference equation that approximates Equation (7.80). 

J J �X J J-1 (7.83) 

This is not a particularly accurate method, but nevertheless illustrates the 

general nature of explicit schemes. Note that all terms on the right-hand side of 

Equation (7.83) are known from time tn. Hence, kj+1 is obtained from simple 

algebraic operations. Because only algebraic operations are needed (as opposed 
to inversion of a large matrix), explicit methods are easy to implement. 

The primary shortcoming of explicit schemes is a limit on the timestep 

that can be used. For too large a timestep, solution errors will grow with in

creasing iterations and the computation becomes unstable. The most commonly 

used method for determining the stability properties of a time-marching finite

difference scheme is von Neumann stability analysis [see Roache (1998a) or 

Anderson et al. (1984)]. In this method, we introduce a discrete Fourier series 

solution to the finite-difference equation under study, and determine the growth 
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rate of each mode. If all Fourier modes decay as we march in time, the scheme 
is stable. However, if even a single mode grows, the scheme is unstable. We 
write each Fourier component as 

(7.84) 

where G is called the amplitude factor, i -1 and K is wavenumber. The 
stability of a scheme is determined as follows: 

IGI < 1, 
IGI 1, 
IGI > 1, 

Stable 
Neutrally Stable 
Unstable 

(7 .85) 

In general, G is complex, and the notation en means G raised to the power n. 
The amplitude factor for Equation (7.83) is 

G 
Thus, 

where 

IGI2 ( ) u f:lt 
= 1 + 2 1 - cos 8 f:lx 

u f:lt -
1 f:lx 

(7.86) 

(7.87) 

In order to have a stable scheme, IGI must be less than or equal to 1 for all 
possible values of 8. Clearly, for the upwind-difference scheme, errors will not 
grow provided the condition 

f:lx flt< u or 
u f:lt 
f:lx < 1 (7.88) 

is satisfied. This is the famous Courant-Friedrichs-Lewy (1967), or CFL con
dition. It arises because a disturbance traveling at speed U cannot propagate 
a distance exceeding f:lx in a time equal to f:lt. NcFL is known as the CFL 

Number. 
Explicit methods are of interest in modem CFD applications mainly for time

dependent flows. Their algebraic simplicity makes them especially easy to im
plement on any computer. Their primary drawback is their conditional stability, 
and thousands of timesteps are often needed to achieve steady-flow conditions. 
There has been renewed interest in these methods because of their suitability 
for massively-parallel computers, where they may actually be more efficient than 
implicit schemes which can run with larger timesteps but are trickier to program. 

' 

Implicit methods date back to 1947 when the Crank-Nicolson (1947) method 
first appeared. Other methods such as the Euler [Lilly (1965)] and Alternating 
Direction Implicit (ADI) schemes [Peaceman and Rachford (1955)] are implicit. 
The sdution at time tn+I and location x1 in this type of scheme depends not only 
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upon the solution at the earlier timestep, but upon the solution at other spatial 
locations at time tn+I as well. For example, the Crank-Nicolson method uses 

ak . 1 -ax 2 
kJ"!-+1 - kJ"!--1 kn+1- kn+1 + j+l j-1 

2box 2box (7.89) 

Thus, Equation (7 .80) is approximated by the following second-order accurate 
difference equation: 

where 

' kn+l + kn+1 + 'kn+1 kn \ (kn kn ) -A j-1 j A j+l -- j - A �j+l- j-1 (7.90) 

(7.91) 

Hence, as with the Blottner method discussed in the preceding section, a 
tridiagonal matrix system of equations must be solved. Although inverting any 
matrix is more time consuming than solving a simple algebraic equation, the 
increased complexity is attended by a significant increase in the maximum per
missible timestep. That is, stability analysis shows that the scheme defined in 
Equation (7.90) is unconditionally stable. 

Implicit schemes have proven to be especially useful for steady-flow compu
tations where the CFL limit can be exceeded by factors as large as 5. While these 
schemes will run at a larger CFL number, using larger values of bot sometimes 
introduces significant truncation errors if convective effects have a significant 
effect on the physics of the flow. The number of timesteps required, relative to 
explicit methods, to achieve steady-flow conditions typically is reduced, although 
the factor is N;;;L where n < 1. 

Recall from Section 7.1 that there are three physically relevant time scales 
when turbulence-model equations are used. If we use an explicit finite-difference 
scheme to approximate the Favre-averaged Navier-Stokes equation, stability anal
ysis shows that the wave speed is I ui + a, where u is mass averaged velocity and 
a is sound speed. If v denotes kinematic viscosity, the wave-propagation and 
diffusion timestep limitations are as follows. 

and bot< 
(box)2 

- 2v (7.92) 

We might also anticipate that including source terms in the stability analysis 
would lead to an additional timestep constraint such as bot :::; tdiss· This is 
indeed the case, and this timestep limitation is sometimes more restrictive than 
either condition in Equation (7 .92). 

To illustrate the problem, we add a source term, Sk, to Equation (7.80), 
• • 

gtvmg 
ak +Uak =Sk at ax (7.93) 
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If we suppose that k denotes turbulence kinetic energy, the condition S > 0 
corresponds to production exceeding dissipation, and vice versa for S < 0. To 
cast this equation in discretized fonn, we use Crank-Nicolson differencing and 
we approximate the source term as follows: 

(7.94) 

where 'ljJ lies between 0 and 1. Hence, our finite-difference approximation to 
Equation (7 .93) is 

e;H kj- A (eJtf + kj+1- kj�f- kj_I) + SD.t [�kj + (1- 'I/J)kj+1)] 
(7.95) 

The complex amplification factor for this scheme is 

G __ 1 + 'lj;SD.t - 2i.A sin 0 
1- (1- '1/J)SD.t + 2i.Asin0 

Hence, in order for this scheme to be stable, we must require 

[1 + ·1·SD.tl2 + 4.A2 sin2 0 If/ J <1 
[1- (1- 'ljJ)SD.tJ2 + 4_A2 sin2 () -

After a little algebra, the stability condition simplifies to 

SD.t (1 + ('1/J- !)SD.t] :::; 0 

When S < 0, we find 

1 

Unconditionally Stable; 'ljJ :::; �' S < 0 

(7.96) 

(7.97) 

(7.98) 

(7.99) 

When S > 0, upon first inspection, von Neumann stability analysis indicates 
this scheme is unstable when � ;::::: ! and that D.t must have a lower bound 
(as opposed to an upper bound) to insure stable computation when 'ljJ < �. 
However, these results are irrelevant. This is true because the exact solution to 
Equation (7.93) is proportional to est, and is thus unbounded as t CXl .  When 
this occurs, even if the error is a small fraction of the exact solution, it will also 
be unbounded. The requirement I G I < 1 is thus too stringent for an unbounded 
function. According to von Neumann, the condition for stability when the exact 
soluti()n is unbounded is: 

IGI :::; 1 + O(D.t) (7 .1 00) 

With a little rearrangement of terms, Equation (7.97) can be written as 

2[1 + (¢- !)SD.t] 
SD.t (7 . 1  01) 
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Since the factor proportional to sin2 (} serves only to increase the denominator, 
we can omit it and say that 

2(1 + ( 'l/7 - ! )S�t] 
[1- (1- 'l/l)S�tj2 

S�t (7.102) 

Clearly, the function in parentheses is bounded as �t 0 as long as the de
nominator doesn't vanish, so that Equation (7.100) is satisfied provided: 

1 
�t::; (1- 'l/l)S' 

S>O (7.103) 

Although this analysis has been done for implicit Crank-Nicolson differenc
ing of the convective term, the same result holds for explicit methods. While 
Equation (7.94) involves kj+1, the tem1s in an explicit scheme can be reananged 
to preserve its explicit nature. For example, if we use upwind differencing for 
the convective term in Equation (7.93), the discretized equation becomes 

J 1 - (1- 'l/l)S�t 
(7 .1 04) 

We now have sufficient information to discuss the most suitable discretization 
approximations for source terms in both explicit and implicit methods. If second
order accuracy is required, as it would be for numerical simulation of an unsteady 
flow, '!jJ must be 1/2. On the other hand, if only steady-state solutions are needed, 
we can take advantage of the fact that using '1/J 0 when S < 0 and ¢ 1 
when S > 0 yields an unconditionally stable (albeit first-order accurate in time) 
scheme. In summary, the following has proven satisfactory for turbulence-model 
equations. 

Second-Order Time Accuracy - Conditional Stability 

2 

�t ::; lSI 

First-Order Time Accuracy- Unconditional Stability 

Sk . 
for S < 0 

Skn for S > 0 J 

(7. 105) 

(7.106) 

All of the one-dimensional time-marching programs discussed in Appendix C 
use Equation (7. 106). 
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7.5 Block-Implicit Methods 
The most efficient numerical methods currently available for complex flowfields 
are block-implicit methods. They differ from elementary implicit methods in 
one very important respect. Specifically, when an elementary implicit scheme is 
applied to a coupled set of equations, each equation is solved in sequence. In the 
context of a system of equations, this is usually referred to as a sequentially 
implicit method. By contrast, a block-implicit scheme solves all of the equations 
simultaneously at each grid point. The block-implicit formulation, generally re
quiring inversion of block-tridiagonal matrices, entails more computational ef
fort than a sequentially-implicit method. The additional computation at each 
grid point and timestep is usually compensated for by a dramatically improved 
convergence rate. Block-implicit solvers can achieve CFL numbers in excess 
of 100, and often converge in fewer than 500 timesteps for flows including 
boundary-layer separation. For example, using a block-implicit method, a su
personic two-dimensional shock-separated turbulent flow can be simulated with 
80000 grid points and a k-w model on a 3-GHz Pentium-D microcomputer in 
about 45 minutes of CPU time. On the same computer, a similar computation 
would take about 6 hours using a sequentially-implicit method [\Vilcox (1990)] 
and 18 hours using an explicit method [Wilcox (1974)]. 

As in the preceding section, we begin with a brief overview of block-implicit 
methods. For simplicity, we focus on a well-known one-dimensional system. 
The primary concern in this section is, of course, upon how turbulence-model 
source terms impact such methods. 

Consider the one-dimensional conservation equations for flow of a viscous, 
perfect gas, written in vector form, viz., 

where 

Q= 

-p 
- -pu 

pE 
' F 

aQ a 
0 + 0 (F- Fv) 0 

t X 

- -pu 
pu2 + P  

(pE + P)u 
, Fv = 

0 

- A  A 

UTxx- Qx 

(7.107) 

(7 .1 08) 

The quantities fxx and qx denote total stress and heat flux, respectively. Also, 
the total energy for one-dimensional flow is E e + �u2 and the pressure is 
given by P h- l)pe. 

The first step often taken in establishing a block-implicit scheme for this 
system of equations is to introduce a first-order backward-difference (implicit 
backward-Euler) scheme, which can be written symbolically as follows. 

a 
ox 

(F- Fv) 
n+l 

(7.109) 



410 CHAPTER 7. NUMERICAL CONSIDERATIONS 

Now, we expand the flux vectors F and Fv in a Taylor series about time level n, 
wherefore 

at 
and similarly for F v. Then, using the chain rule of calculus, we have 

aF 
at 

aFaQ 
aQ at 

(7.110) 

(7.111) 

where aFjaQ is the inviscid-flux Jacobian matrix. The incremental change in 
the dependent-variable vector, �Q, is defined by 

(7.112) 

Since we approximate the unsteady term according to aQj at · �Q/ �t, we can 
rewrite Equation (7.110) as 

Because of the prominent role played by �Q, this approach is usually referred 
to as the delta formulation. 

Finally, we must introduce a discretization approximation for the spatial 
derivatives of the vectors F and Fv. In general, this means forming a matrix 

. that multiplies (F - F v ), and yields a desired degree of accuracy. Details of 
this matrix are unimportant for our discussion, and it is sufficient to introduce 
symbolic notation with the understanding that an approximation to spatial differ
entiation is implied. Thus, we introduce a finite-difference matrix operator, Ox, 
so that 

a 
ax 

(F- Fv) 
n+l aF aFv 

-

aQ aQ 
�Q (7.114) 

where oF v / aQ is the viscous-flux Jacobian matrix. Collecting all of this, we 
arrive at the symbolic form of a typical block-implicit method: 

aF aFv 
-

aQ aQ 
�Q (7.115) 

where I is the unit (identity) matrix. The matrix multiplying �Q in Equa
tion (7 .115) is of block-tridiagonal form. In the present example, the blocks are 
3 by 3, corresponding to the three equations being solved simultaneously at each 
mesh point. 

Now, suppose we choose to use a two-equation turbulence model to determine 
the Reynolds stress, still considering one-dimensional flow for simplicity. The 
following three points must be considered in modifying a block-implicit solution 
scheme. 
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1. Decide whether to solve all equations simultaneously or to solve the model 
equations and mean-flow equations sequentially. 

2. If the preferred option is to solve all equations simultaneously, determine 
the changes to the flux-Jacobian matrices. 

3. Make provision for handling source terms. 

In principle, solving all equations simultaneously will yield the most rapidly 
convergent scheme in the number of iterations, but not necessarily in CPU time. 
However, the coupling between the turbulence-model equations and the mean
flow equations appears to be relatively weak. The primary coupling from the 
turbulence-model equations to the mean-flow equations is through the diffusion 
terms in the mean-momentum and mean-energy equations, and the eddy viscosity 
is usually treated as a constant in fmming the viscous-flux Jacobian matrix. 
Limited experience to date seems to indicate there is little advantage to solving 
all equations simultaneously as opposed to solving the model equations and mean
flow equations sequentially. 

If all equations are solved simultaneously, the basic system of equations for 
the k-w model would be as follows: 

8Q 8 
8t 

+ 
8x 

(F - F v ) S 

where the dependent-variable and inviscid-flux vectors are 
- --p pu -- pu2 +P pu 

Q pE ' F- (pE + P)u 
pk puk - --
pw puw 

The viscous-flux and source-term vectors are given by 

0 

4 au+-3J..lax PTxx 
- ( 4 au - ) A 

U 3�tax + PTxx - qx ' s = 

0 

0 

0 

( • ) ak J..L+a J..lT OX 
- au (3* PTxxax- pwk 

(J..L+aJ..Lr) �� a ( �) 157-.-r;x �� - (3pw2 

(7.116) 

(7.117) 

(7.118) 
There are two places where the turbulence kinetic energy appears that have 

an impact on the flux-Jacobian matrices. Specifically, the specific total energy, 
E, should be written as 

E - 1_2 k =: e + 2u + (7.119) 
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and the Reynolds-stress tensor is 

(7.120) 

Hence, since the vector Q contains pk as one of its elements, the inviscid- and 
viscous-flux Jacobian matrices must be evaluated from scratch. Some of the 
original 9 elements appropriate for laminar flow or an algebraic model will be 
affected by the appearance of k in E and fxx· For this system, the inviscid-flux 
Jacobian matrix assumes the following form: 

oF 
oQ 

0 
()'2

3)u2 

- [H- =r;1u2) u 

-uk 
-

-uw 

1 

(3 'Y)u 

[H- ('Y- 1)u2) 

k 

w 

where H is the specific total enthalpy defined by 

- 1 
2 H = h+ 2u +k 

0 
('Y- 1) 

-

'YU 

0 
0 

0 
-('Y- 1) 

-('Y- 1)u 
-

u 

0 

0 
0 
0 
0 

-

u 
(7.121) 

(7.122) 

As shown in Equation (7.121), the first two components on row 3 involve H, 
and are thus affected by k. In modifying an existing computer program based on 
this block-implicit scheme, all that would be required to modify the inviscid-flux 
Jacobian matrix components would be to have H appear as indicated, and to 
include k in the computation of H. 

By contrast, if we solve the mean-flow and turbulence-model equations se
quentially, we retain the original conservation equations [Equation (7.107)].  All 
of the flux-Jacobian matrices and, in fact, the entire algorithm remain the same. 
To detem1ine k and w, we then consider the following vector equation: 

where 

pk 
q -- -

{JVJ 

oq 0 
ot 

+ 
ox 

(f- fv) s 

puk 
- -

puw 

Pr au - /3* iif,,k XX 8x ,_,-

( • ) 8k J.l+a J.lT 8x 
8w (J.l+a J.lT) 8x 

a(� )f5rxx �� - j3pw2 

(7.123) 

(7.124) 

(7.125) 

Consistent with the block-implicit approach, we linearize the flux and source 
vectors according to 

or 
oq 

Ofv 
oq .6-q (7.1 26) 
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. n OS 1\ 
s S + 

oq
uq (7.127) 

where 8sjoq is the source-Jacobian matrix. The flux-Jacobian matrices are 
generally much simpler than their counterparts in the mean-flow equations. For 
example, the inviscid-flux Jacobian matrix is 

-

u 
0 

0 
(7.128) -

u 

This brings us to the all important question of how to handle the source-term 
vector s. Several prescriptions are possible, and the primary considerations are 
to: maintain numerical stability; achieve rapid convergence rate; and guarantee 
that k and w are positive definite. Wilcox (1991) has found the following lin
earization of the source terms to be quite satisfactory for the k-w model, within 
the framework ofMacConnack's (1985) block-implicit method. Specifically, the 
source-term vector is rearranged as follows. 

s -· 
P-r au - /3* (·�) (i>�)2 

XX ax k p 

a (�) p-r au - j3 (i>U:):_ 
k XX ax p 

(7.129) 

Then, treating both f5Txx ouj ox and w/k as constants in computing the source
Jacobian matrix, we arrive at 

OS 
' 

8q 
= 

-2j3*w 0 

0 -2j3w 
(7.130) 

In this treatment of the source-term vector the production terms are evaluated 
explicitly (i.e., computed at time level n), and the dissipation terms are treated 
implicitly (computed at time level n + 1). The block-tridiagonal scheme for the 
turbulence-model equations becomes 

of ofv 
-

oq oq 
(7.131) 

Since os / oq is a diagonal matrix and its diagonal elements are always nega
tive, its contribution is guaranteed to enhance diagonal dominance of the matrix 
multiplying �q. Additionally, Spalart and Allmaras (1992) show that this form 
guarantees that k and w (or E for a k-E model) will always be positive. 

Ho-wever, Spalart and Allmaras also point out that in regions where production 
and dissipation are both large and dominate the overall balance of terms in 
the equation, this form can result in slow convergence. This appears to be a 
more serious problem for the k-E model than it is for the k-w model. Wilcox 
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( 1991 ), for example, has shown that the scheme described above yields very 
rapid convergence in flows with attached equilibrium boundary layers and in 
flows with large regions of separation. The procedure recommended by Spalart 
and Allmaras is similar to the procedure recommended for elementary implicit 
methods in Equation (7 .1 06). That is, they recommend linearizing the source 
term according to 

s · sn +neg 

where the function neg( x) is defined as 

x, 
0, 

as 
8q 

x<O 
x>O -

(7.132) 

(7.133) 

The production terms are then included in computing the source-Jacobian matrix. 
The neg operator is understood to apply to each element of the resulting ( diag
onal) matrix. Thus, as long as dissipation exceeds production, both production 
and dissipation are treated implicitly, and explicitly when production exceeds 
dissipation. Huang and Coakley (1992) have successfully applied a linearization 
similar to that recommended by Spalart and Allmaras. Gerolymos (1990), Shih 
et al. (1993) and Merci et al. (2000) also offer interesting information regarding 
stiffness and numerical issues resulting from source terms in turbulence-model 
equations. 

7.6 Solution Convergence and Grid Sensitivity 
Regardless of the application, there is a need for control of numerical accuracy 
in CFD [Roache (1990, 1998b)]. This need is just as critical in CFD work as 
it is in experiments where the experimenter is expected to provide estimates for 
the accuracy of his or her measurements. All CFD texts of any value stress this 
need. 

7.6.1 Iteration Convergence and Grid Convergence 
One key issue determining numerical accuracy is iteration convergence. Most 
numerical methods used in CFD applications require many iterations to converge. 
The iteration convergence error is defined as the difference between the current 
iterate and the exact solution to the difference equations. Often, the difference 
between successive iterates is used as a measure of the error in the converged 
solution, although this in itself is inadequate. A small relaxation factor can 
always give a false indication of convergence [Anderson et al. (1984)]. What
ever the algorithm is, you should always be careful to check that a converged 
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solution has been obtained. This can be done by trying a stricter than usual 
convergence criterion, and demonstrating that there is a negligible effect on the 
solution. Most reputable engineering journals require demonstration of iteration 
convergence and grid independence as a condition for publication. This is not 
specific to turbulence-model applications all of the usual criteria for standard 
CFD applications apply. 

Specific to turbulence-model computations, the approach to iteration con
vergence often is more erratic, and typically much slower, than for laminar
flow computations. A variety of factors including stiffness and nonlinearity of 
the equations, as well as the severely stretched finite-difference grids needed 
to resolve thin viscous layers, yield less rapid and less monotone convergence. 
Ferziger (1989) explains the slow convergence often observed in terms of the 
eigenvalues of the matrix system corresponding to the discretized equations. He 
notes that any iteration scheme for a linear system can be written as 

(7 .134) 

where ¢/" is the solution after the nth iteration, A is a matrix, and S is a source 
term. He then shows that the actual solution error is given by 

(7.135) 

where r!>exact denotes the exact solution to the discretized equations and Amax 
is the largest eigenvalue of the matrix A. Of course, all eigenvalues of A must 
be less than 1 for the solution to converge. This result shows that the solution 
error is larger than the difference between iterates. Furthermore, the closer Amax 
is to 1, the larger the ratio of solution error to the difference between iterates. In 
other words, the slower the rate of convergence of the method, the smaller the 
difference between iterates must be to guarantee iteration convergence. 

A second key issue is grid convergence or grid independence. Because of 
the finite size of finite-difference cells, discretization errors exist that represent 
the difference between the solution to the difference equations and the exact 
(continuum) solution to the differential equations. It is important to know 
the magnitude of these discretization errors and to insure that a fine enough grid 
has been used to reduce the error to an acceptable level. 

As with iteration convergence, all CFD work should demonstrate grid con
vergence, regardless of what equations are being solved. In most engineering 
journals� it is no longer sufficient to publish results performed on a single fixed 
grid. While grid sensitivity studies should be done for all CFD work, they 
are even more crucial for turbulence-model computations because of the need 
to separate numerical error from turbulence-model error. This issue came into 
sharp focus at the 1980-81 AFOSR-HTTM-Stanford Conference on Complex 
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Turbulent Flows [see Kline, Cantwell, and Lilley (1981)]. Clearly, no objective 
evaluation of the merits of different turbulence models can be made unless the 
discretization error of the numerical algorithm is known. 

7 .6.2 Richardson Extrapolation 
The best known way to demonstrate grid convergence is to repeat a computation 
on a grid with twice as many grid points, and compare the two solutions. If 
computer resources are unavailable to facilitate a grid doubling, a grid halving is 
also appropriate, although the error bounds will not be as sharp. Using results for 
two different grids, teclmiques such as Richardson extrapolation [see Roache 
(1998b)] can be used to determine discretization error. This method is very 
simple to implement, and should be used whenever possible. 

For a second-order accurate method with central differences, Richardson ex
trapolation assumes the error, Eh ¢exact- ¢h, where ¢h denotes the solution 
when the grid-point spacing is h, can be expanded as a Taylor series in h, 
wherefore 

(7 .136) 

Note that for three-point upwind differences the leading term is still e2h2, but 
the next term is e3 h 2, and Richardson extrapolation is only 0 ( h 3) rather than 
O(h4). By hypothesis, the ei are, at worst, functions of the coordinates, but are 
nevertheless independent of h. Now, if we halve the number of grid points so 
that h is doubled, the error is given by 

E2h 4e2h2 + l6e4h4 + 64e6h6 + · · · (7.137) 

For small values of h, we can drop all but the leading terms, whence the dis
cretization error is given by 

(7.138) 

Equation (7.138) provides an excellent estimate of the difference between the 
exact continuum solution and ¢h· The terminology "extrapolation" simply re
flects the fact that we can use our pair of solutions to extrapolate to the continuum 
solution by writing 

(7.139) 

As a final comment, Richardson extrapolation has limitations. First, if it is 
applied to primitive variables such as velocity and internal energy, its implications 
regarding momentum and energy conservation may be inaccurate. Second, the 
method implicitly assumes the solution has continuous derivatives to all orders. 
Hence, its results are not meaningful near shock waves or turbulent/nonturbulent 
interfaces of the type discussed in Subsection 7 .2.2. 
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7 .6.3 Grid Convergence Index 
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As noted by Roache (1998b), Richardson extrapolation is not limited to doubling 
or halving the grid-point spacing. For the generalized theory of Richardson 

extrapolation, we write 

(7.140) 

where p is the order of the finite-difference scheme and r is the grid-refinement 
ratio. By definition, if we halve the size of the grid-point spacing, then r 1/2 
and doubling the size corresponds tor 2. 

It is a straightforward matter to use Richardson extrapolation on two grids that 
differ in cell size by a factor of 2 because the grid-point locations on the coarse 
grid are identical to those on the fine grid at every other point. Nevertheless, the 
method applies to any value of r. Since the solutions have to be compared at 
the same physical point, interpolation is needed on one of the grids to establish 
solution values at the same points for comparison. 

Building on Richardson extrapolation, Roache (1998b) has developed the 
Grid Convergence Index (GCI) to help establish a uniform method for reporting 
the estimated etTor in a computation. By definition, 

(7.141) 

The quantity Eh is the fractional error for the grid with spacing h. If two grids 
are used, Roache recommends using Fs 3. This will provide a conservative 
estimate of solution error for virtually all fluid-flow problems. If three different 
grids are used, Fs 1.25 is appropriate. In the latter case, the three-grid 
sequence of computations can be used to first establish the actual order of the 
method, p. Then, the index can be computed to provide a measure of how 
accurate the solutions on the finest grids are. 

The GCI is especially useful as a measure of how accurately key quantities 
such as lift and drag coefficients, skin friction and surface-pressure coefficients 
have been computed. That is, its use is not confined to an overall measure of 
solution errors at specific grid points. It can be applied to any key feature of the 
solution that is of particular interest. 

To determine the order of a finite-difference method, we observe that if it is 
pth

_order accurate, then the solution error will change according to 

(7.142) 

The value of p is the slope of Eh as a function of h on a log-log plot. At least 
three grids are needed to accurately determine p. It is simplest if the three grids 
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have been done with constant r. That is, if the finest grid has spacing h, the 
next to finest would have rh and the coarsest would have r2 h. In this case, the 
value of p can be determined as follows. 

p fn 1(</>·rh- </>r2h)/(</>rh- </>h ) I 
f.nr 

(7.143) 

If r is not constant, computing p is a bit more complicated and typically requires 
an iterative solution [see Roache (1998b)]. 

As an example, consider the results from a grid-convergence study shown 
in Table 7 .4. The computation was done on a uniformly spaced mesh with N 
points that has been doubled from one grid to the next so that r 2. Since the 
table includes information for four grids, we can apply Equation (7.143) twice, 
first to the 32-64-128 trio and then to the 64-128-256 results. 

Table 7.4: Grid Convergence Study Results. 

I N I h I ¢h I P I I CCI J 
32 0.03125000 1.08359 
64 0.01562500 1.00539 -7.7780·10-2 0.648% 

128 0.00781250 1.00034 3.95 -5.0482 . w-3 0.042% 
256 0.00390625 1.00002 3.98 -3.1999 . w-4 0.003% 

Clearly, p is very close to 4 and we conclude that the method used in this 
computation is 4th-order accurate. Hence, in applying the GCI, Equation (7. 141) 
becomes 

CCI (7 . 144) 

Normally expressed as a percent, the GCI provides an excellent estimate of the 
error band that can be placed on a fine-grid solution. 

7.6.4 Near-Wall Grid-Point Spacing 
There is another grid-related factor affecting solution accuracy. In order to re
solve thin viscous layers, for example, highly stretched grids are normally used. 
Conventional central-difference approximations are only first-order accurate on 
such a grid, and care must be taken to account for this. Also, the location of 
the grid point nearest the surface has a nontrivial effect on the accuracy of skin 
friction and surface heat flux. Wilcox (1989), for example, has found that grid
insensitive computations using wall functions that account for pressure gradient 
[e.g., Equation (5. 126)] can be obtained with block-implicit methods provided 

10 < Yt < 100, (wall functions) (7. 145) 
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where Yt is the sublayer-scaled value of the first grid point above the surface. 
This range appears to hold for boundary-layer computations as well [Chambers 
and Wilcox (1977)], again provided pressure gradient is accounted for. When 
turbulence-model equations are integrated through the viscous sublayer, many 
researchers have shown that it is imperative to require 

Yt < 1, (integration through the sublayer) (7.146) 

For shock separated flows, particularly at hypersonic speeds, Marvin and Huang 
( 1996) recommend the more-stringent condition Yt < 0. 3. When these limits 
are not adhered to, consistent with the discussion in Subsection 7 .2.1, solution 
errors throughout the boundary layer generally are large. 
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Problems 
7.1 For a Mach 3 turbulent flat-plate boundary layer, it is a fact that Mc1ReL � Reo•. 

(a) In the viscous sublayer, the appropriate scaling for the specific dissipation rate is 
w ,...., u'; / v. Noting that U-r � U Ff, express the ratio of tdiss to twave as a 
function of Reo• in the sublayer. 

(b) In the defect layer, the appropriate scaling for the specific dissipation rate is given 

by w ,....., U-r/i:'::. where C::. - Ut5* fur. Express the ratio of tdi.ss to twave as a 

function of Reo• in the defect layer. 

(c) Comment on the implications of your estimates in Parts (a) and (b). 

7.2 Detem1ine whether or not the following systems of equations are stiff with regard to 

the specified initial conditions. 

(a) 

(b) 

d 
dt 

d 
dt 

X 
y 

X 
y 

--

--

-3 4 

4 3 J 

-3 1 
4 -3 

X 
y 

X 
y 

' 

' 

±(o) 
y(O) 

±(o) 
y(O) 

= -5 

---

x(O) 
y(O) 

x(O) 
y(O) 

7.3 Consider the high-Reynolds-number k-w model's near-wall variation of specific dis
sipation rate, w, for a rough wall, i.e., 

Ww A = w = .,.--------,;-::-
[1 + Ayj2 ' 

(a) Assuming equally-spaced grid points, show that the central-difference approxima
tion to d2 w / dy2 at the first grid point above the surface (i.e., at y = C::.y) is given 

by 

where 

2 exact 

[1 + AC::.y]2[1 + 2AC::.y + �(AC::.y)2] 
<I>(C::.y) = 

[1 + 2AC::.yj2 

(b) Assuming a slightly-rough wall so that Ww = 40000vw / k; and using f3o = 0. 0708, 

show that 
t::.y

+ 
AC::.y = 21.7 + 

ks 
(c) Determine the percentage error introduced by the central-difference approximation 

in computing d2 w / dy2 when we assume a hydraulically-smooth wall with k J = 5, 
and set t::.y

+ = 1/8. 
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7.4 This problem shows that while trapezoidal-rule integration is second-order accurate 
for a piecewise continuous function with a discontinuous frrst derivative, the truncation 

error depends upon placement of the nodes. Using the trapezoidal rule, the integral of a 
function f ( x) is 

b N 
f(x) dx � 

1 
_ f(xk)l:lx + 2(f(a)- f(b)]l:lx 

a k=l 
where 

Xk = kl:lx and b-a l:lx = --=-=--N 
Consider the following piecewise continuous function f ( x): 

f(x) = O<x<1 - -

1, 

Note that a node lies at x = 1 only for even values of N. 
(a) VerifY that the exact integral of f ( x) for x ranging from 0 to 2 is 

I=. 
0 

2 4 f(x)dx = 3 

(b) Assuming N is odd show that the trapezoidal rule yields 

I � i 1 -
1 ( l:lx) 2 

3 16 

(c) Assuming N is even show that the trapezoidal rule yields 

M 
HINT: Use the fact that 

k=l 

4 
I�-

3 

7.5 Consider the mixing-length model with £mix = aS, where a is a constant and 8 is 
shear-layer thickness. 

(a) Assuming that dU I dy > 0, verifY that according to the Rubel-Melnik transfonna

tion, 

dU 
df, 

(b) For flow near a turbulent/nonturbulent interface with constant entrainment velocity, 

V < 0, detennine the velocity difference, Ue - U, as y 8. Express your answer 
as a function of I VI, a and y I 8. 
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7.6 Verify that, with the stress limiter excluded, the solution for the Wilcox (2006) k-w 
model at a turbulent/non turbulent interface is given by Equations (7 .41 ). To do this, begin 
with the interface equations, which (with vr - k/w) are as follows. 

vdu = d 
dy dy 

dU 
Vr dy 

dw V = a  dy 

' 

dU 
dy 

2 

dk V = Vr dy 
dU 
dy 

2 
(3* k * d - w + u  dy 

(3 2 U do dk dw d - oW + d d + ud w y y y 
d,w 

Vr dy 

dk 
Vr dy 

(a) Introduce the Rubel-Melnik transfonnation and show that these equations transform 
to 

dU d2U v 
dt;. - dt;_2 ' vdk = dt;. 

dU 2 Udo dk dw d2w 
d!;, - f3okw + k d!;, d!;, + u dt;_2 

(b) Assume a solution of the fonn Ue-U "'Ue>-."vr:., k"' Ke>-.kVf. andw"' We>-.wVf. 
and detennine the constants Au, Ak and Aw. NOTE: Use the fact that V < 0 in 
deriving your solution. 

(c) Using your solution from Part (b), solve for nu, nk and nw. 

7.7 Verify that, with the stress limiter included, the solution for the Wilcox (2006) k-w 
model at a turbulent/nonturbulent interface is given by Equations (7 .41) with the exception 
that now nu = nk. To do this, begin by noting that the interface equations are: 

vdu = d 
dy dy ' Vdk = ..j1J* k dU _ (J*wk + u* d !:._ dk 

dy Clirn dy dy W dy 

dw ..j1J* dU V = a  w dy Ctim dy 
(3 2 U do dk dw d - oW + d d + ud w y y y 

kd,w - -:-w dy 
(a) Introduce the Rubel-Melnik transfonnation with vr = k/w and show that these 

equations transform to 

vdu _ ...JiF dk 
df, - Clirn d!;, ' 

dw ...JiF V df, = a 
Ctirn 

w 

(b) Assume a solution of the form Ue-U "'Ue>-.uVf., k"' Ke>-.kVf. andw "'We>-.wVf. 
and determine the constants Au, Ak and Aw. NOTE: Use the fact that V < 0 in 
deriving your solution. 

(c) Using your solution from Part (b), solve for nu, nk and nw. 
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7.8 The object of this problem is to verify that Equation (7.59) is the solution to Equa

tions (7.56)- (7.58). 

(a) Integrate Equations (7 .56) once and impose the freestream boundary condition 
[Equation (7 .58)]. 

(b) Observing that a = a* 

equations to show that 
= 1/2 for Saffinan's model, combine the k and w2 

dk k 
--:----:::-= --;:-dw2 w2 

Solve this equation subject to the boundary conditions . 
• 

(c) Introduce the dimensionless variables 

_ I VI (o- y) y= and 
-w= 

v 

and substitute the solution fork into the equation for w. Set any arbitrary constant 
of integration equal to zero, and verify the solution for o - y. 

(d) Letting [J = U /lV I , rewrite the momentum equation. Using the dimensionless 

equation for w detived in Part (c), verify that 

1 + w 
2 + w 

and verify the solution for Ue - U. 

- - -

dU U- Ue --dw -w 

7.9 This problem illustrates how nonlinear terms affect numerical stability for parabolic 
marching methods. Consider the following limiting form of the k-w model. 

uaw =a ax 
au 
ay 

We wish to analyze the stability of the solution to this equation under the following 
discretization approximations. 

aU 2 . a(aU jay)2 i = w 
a i-1 rn+1 

Y "-'rn+1 

f3ow2 _:_ (1 + 'l/Jw)f3ow;,.�1w;,.+1- 'l/Jwf3o(w:;;�I)2 

(a) Assuming that w:n.+1 is the sum of the exact solution to the discretized equation, 

U!rn+ 1, and an error term, ow i, viz., 

w;,.+1 = Wrn+l + OWi 

linearize the discretized equation for w and verify that 
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(b) Using the fact that Wm+I satisfies the exact discretized equation, simplify the 
denominator and show that 

• 
r5w' 

r5wi-1 
--

('1/Jw- 1)- a(aUjay)2 /((30w';,.+l) 
'1/Jw + U(4wm- Wm-d/(f3ow';,.+1Ax) 

(c) Assuming the term proportional to U is negligible, determine the condition that 
'1f.;w must satisfy in order to insure that jr5wi/r5wi-11 < 1. 

7.10 Using von Neumann stability analysis, determine G and any condition required for 
stability of the following fmite-difl'erence schemes. Assume U > 0, v > 0 and S < 0. 

(a) Euler's method: 

(b) Richardson's method: 

(c) Crank and Nicolson's method: 

kn+1 = kn - U At (k"!-+1 + kn - kn+1 - kn ) + .!_SAt (k"!-+1 + k':) J 'J 4Ax J+1 J+1 J-1 J-1 2 J J 

7.11 Using von Neumann stability analysis, determine G and any condition required for 
stability of the following first-order accurate scheme applied to the in viscid Burgers' 
equation, Ut + U Ux = 0: 

n+1 n U At ( n+l n ) uj = Uj - 2Ax UJ+1 - Uj-1 ' u > 0  

7.12 Consider the following one-dimensional wave equation with source and diffusion 
terms. 

ak 
uak 

at
+ ax 

a2 k = Sk + v 
ax2 

where U > 0, v > 0 and S can be either positive or negative. 

(a) Cast this equation in finite-difference form using Crank-Nicolson differencing and 
the tollowing approximation for the source term. 

(b) Using von Neumann stability analysis, determine G and any condition required 

for stability of this finite-difference scheme. How do your results compare to the 

analysis of Equation (7.93) in Section 7.4? 

7.13 Using von Neumann stability analysis, determine G and any condition required for 

stability of Lax's method applied to the in viscid Burgers' equation, Ut + U Ux = 0: 

- 0  - ' u > 0  
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7.14 Verify that the dependent-variable and inviscid-flux vectors in Equation (7 .1 1 7) can 
be written as 

Q= , F = 

Q2 
e;)' )Q�/Ql + h- I)Q3 - ('y- l)Q4 

'YQ2Q3/Q1- (7;1 )QVQi- ('y- I)Q2Q4/Q1 
Q2Q4/Ql 
Q2Q5/Ql 

and show that the flux-Jacobian matrix is given by Equation (7 .1 21 ). 

7.15 Suppose a finite-difference method is only first-order accurate. When this is true, 
Richardson's estimate of the error must be revised. Assuming 

propose an alternative to Equation (7 . I3 8). 

7.16 The following table represents partial results for one-dimensional finite-difference 
computations using a second-order accurate, time-marching method. The computations 
have been done on grids with 50, 1 00 and 200 points. Use Richardson extrapolation to 
estimate the discretization error at each point for the two fmest grids. Based on your 
results, make a table of the results below and add a column with your best estimate of 
the continuum solution (grid-point spacing 0) to the differential equation. 

• 
r/>50 I • r/>wo I • 

r/>200 J J J 

1 0.5592 I 0.5628 I 0.5607 
2 0.5700 3 0.5740 5 0.5726 
3 0.5737 5 0.5748 9 0.5745 
4 0.56I5 7 0.5557 1 3  0.5573 

7.17 The following table represents partial results for one-dimensional finite-difference 
computations using a second-order accurate, time-marching method. The computations 
have been done on grids with 50, 100 and 200 points. Use Richardson extrapolation to 
estimate the discretization eiTor at each point for the two fmest grids. Based on your 
results, make a table of the results below and add a column with your best estimate of 

the continuum solution (grid-point spacing 0) to the differential equation. 

r/>50 
• r/>wo • 

r/>200 • 
J J J 

1 3.00361 1 2.96624 I 2.95443 

2 3.07446 3 3.061 57 5 3.05965 

3 3.09224 5 3.06523 9 3.07557 

4 3.54523 7 3.53756 13 3.52365 
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7.18 The object of this problem is to verifY that Program WAKE (see Appendix C) is 
second-order accurate and to compute the grid-convergence index (GCJ). 

(a) Select default conditions in Program WAKE__DATA to clear any previous applica
tions. Then, run computations with N = 101, 151 and 201 grid points. Record the 
5-significant-digit spreading rate, 8', from the printed output for each computation. 

(b) Use Richardson extrapolation for the 1 01- and 20 1-point computations to infer 8�, 
the "exact" value of 8'. 

(c) Defme the error, Eh = 8'- 8� for the three computations. Make a log-log plot of 
Eh versus h = 1/ ( N - 1) and confu m that the order of accuracy of the numerical 
method implemented in WAKE is p = 2. 

(d) Compute the GCI (expressed as a percent) for the 151- and 201-point grids with 
the 10 1-point grid results as the basis in both cases. 

7.19 The object of this problem is to verify that Program SUBLAY (see Appendix C) is 
second-order accurate and to compute the grid-convergence index (GCI). 

(a) Select default conditions in Program SUBLAY __DATA to clear any previous appli
cations. Then, run computations with N = 10 I, 151, 201, 301 and 401 grid points. 
Each time you change N, set the value of y+ at the point nearest the surface to 
y;i = 10/(N- 1). Record the 6-significant-digit constant in the law of the wall, 
C, from the printed output for each computation. 

(b) Use Richardson extrapolation for the 201- and 401-point computations to infer 
000, the "exact" value of C. 

(c) Defme the error, Eh = C- Coo for the five computations. Make a log-log plot 
of Eh versus y;i" and confmn that the order of accuracy of the numerical method 
implemented in SUBLJ\Y is p = 2. 

(d) Compute the GC I (expressed as a percent) for the 151- through 40 1-point grids 
with the next smallest grid results as the basis in all cases. 

7.20 The object of this problem is to verify that Program EDDYBL (see Appendix C) is 

second-order accurate and to compute the grid-convergence index (GCI). 

(a) Use Program EDDYBL__DATA and the input data supplied on the companion CD 
for Fiow 1400. Run computations with N = 101, 151 and 201 grid points. Each 
time you change N, you must select the proper "Geometric Progression Ratio," 
k9, to adjust grid-cell spacing. Use k9 = 1.07, 1.046 and 1.0345 for N = 101, 

151 and 201, respectively. Record the 6-significant-digit skin friction, Cfe, from 
the "long" printed output for each computation. 

(b) Use Richardson extrapolation for the 101- and 201-point computations to infer 
CJoo, the "exact" value of Cfe· 

(c) Define the error, Eh = Cfe - Cfoo for the three computations. Make a log-log 
plot of Eh versus Yt = 27/ ( N - 1) and confirm that the order of accuracy of the 
n11merical method implemented in EDDYBL is p = 2. 

(d) Compute the GCI (expressed as a percent) for the 151- and 201-point grids with 
the 10 1-point grid results as the basis in both cases. 



The focus of the previous chapters has been on approximate, Reynolds-averaged, 
models for use in general engineering applications. Throughout this text, we have 
stressed the virtue of using the minimum amount of complexity while capturing 
the essence of the relevant physics. This is the same notion that G. I. Taylor 
described as the "simple model/simple experiment" approach. 

Nevertheless, no pretense has been made that any of the models devised in this 
spirit applies to all turbulent flows: such a "universal" model probably doesn't 
exist. We must always proceed with some degree of caution since there is no 
guarantee that Reynolds-averaged models are accurate beyond their established 
data base. Thus, while simplicity has its virtues for many practical engineering 
applications, there is a danger that must not be overlooked. Specifically, as 
quipped by H. L. Mencken .. . 

"There is always an easy solution to every human problem - neat, 
plausible and wrong. " 

This chapter discusses modern efforts that more directly address the physics of 
turbulence without introducing Reynolds-averaged closure approximations. We 
begin by discussing Direct Numerical Simulation (DNS) in which the exact 
Navier-Stokes and continuity equations are solved, though currently at relatively 
low Reynolds numbers because of the limitations of present-day computers. We 
then tum to Large Eddy Simulation (LES) in which the largest eddies are com
puted exactly and the smallest, "subgrid-scale" (SGS) eddies are modeled, hope
fully with a less critical impact on the simulation than in Reynolds-stress model
ing. Next, we address the recently developed Detached Eddy Simulation (DES) 
method that computes the very largest eddies from first principles and uses a 
conventional Reynolds-averaged model for the "smaller eddies." In comparison 
to the LES method, the smaller eddies are much larger than the SGS cell size. 

427 
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Finally, we discuss current efforts in chaos studies, and their possible relevance 
to turbulence. 

8. 1 Background Information 
Before plunging into these topics, it is worthwhile to pause and review the key 
aspects of turbulence that we discussed in Chapters 1 and 2. It may even be 
helpful for the unhurried reader to revisit Sections 1.3 and 2.5 before proceed
ing. Note that in pursuing a more fundamental approach to turbulence in DNS, 
LES and DES studies, we still have a need to understand important aspects 
of turbulence such as the roles played by the largest and smallest eddies and 
the cascade process. The reason for this need changes however. In developing 
a turbulence model, we are trying to mimic the physics in our mathematical 
fotmulation. As our understanding of turbulent-flow physics improves, so the 
quality of our approximations improves (assuming we make intelligent use of the 
improved understanding). Even in DNS we need some knowledge of turbulence 
physics to check for the physical soundness of the numerical results, for exam
ple, to be certain that inadequate resolution or even programming errors are not 
causing spurious results. The same applies to LES and DES. Note, for example, 
that formulating SGS models requires at least as detailed an understanding of 
turbulence physics as Reynolds-averaged models. 

The first important point we must consider in DNS, LES and DES is that 
of the smallest scales of turbulence. Our primary focus in devising Reynolds
averaged closure approximations has been on the dynamics of the largest eddies, 
which account for most of the transport of properties in a turbulent flow. Our 
use of dimensional analysis, in which molecular viscosity has been ignored, 
guarantees that the closure approximations involve length scales typical of the 
energy-bearing eddies whose Reynolds number however defined is much 
larger than unity except close to a solid surface, i.e. in the viscous sublayer, 
y+ < 3, say. This is the reason that viscous-damping functions are often needed 
close to a solid boundary where the dissipating eddies dominate, and even the 
energy-bearing eddies have Reynolds numbers of order unity. DNS is supposed 
to resolve the whole range of eddy sizes, while in LES and DES we try to resolve 
all the impmtant (larger) eddies so that the SGS model for the small eddies does 
not have a critical influence on the overall results. In all three cases we need to 
know the typical scales of the smallest eddies. 

As shown in Subsection 1.3.3, the smallest scales of turbulence are the Kol
mogorov scales of length, time and velocity, viz., 

( )1/4 V - 1/ E  (8.1) 

where v is kinematic viscosity and E is dissipation rate. Note that the Reynolds 
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number vry I v is equal to unity, which is plausible in view of the basic definition 
of Reynolds number as a ratio of inertial forces to viscous forces. Necessarily, 
inertial and viscous effects just balance in the smallest eddies (this is merely 
an order-of-magnitude argument, and vry I v comes out as exactly unity simply 
because the above definitions contain no numerical factors). To relate the Kol
mogorov length scale to the length scale we have been dealing with in standard 
turbulence models, consider the following. By hypothesis, we have been using 
the length scale appropriate to the energy-bearing eddies, £. This length scale is 
often chosen as the integral length scale in statistical turbulence theory, and is 
related to £ by Equation (4.10), so that [see Equation (1.6)] 

17 R - 3/4 
C ,.,._, er (8.2) 

where Rer k1 12Riv is the usual turbulence Reynolds number. Since values of 
Rer in excess of 1 04 are typical of fully-developed turbulent boundary layers and 
C ,.,._, 0. 18 where o is boundary-layer thickness, the Kolmogorov length scale, ry, 
outside the viscous wall region is less than one ten-thousandth times the thickness 
of the boundary layer. 

DNS, LES and DES studies also make use of another length scale from the 
statistical theory of turbulence, the Taylor microscale, ). [ c.f., Tennekes and 
Lumley (1983) or Hinze (1975)] .  The basic definition is 

(8.3) 

For locally isotropic turbulence (i.e. turbulence in which the small scales are 
statistically isotropic even if the large ones are not, which is usually the case at 
high Reynolds numbers), the exact expression for dissipation rate, £, leads to 

(8.4) 

Other definitions of >. can be constructed by using different velocity components 
and gradients in the basic definition, but in locally-isotropic turbulence they are 
simply related. Using Equation (4.10), and assuming k ,...._, u'2, we conclude that 

� ,...._, Re -l/2 
f. T or (8.5) 

Thus, in general we can say that for high-Reynolds-number turbulence there is 
a distinct separation of these scales, i.e., 

(8.6) 
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Now the basic definition shows that A is a composite quantity, depending on 
properties of the large-scale eddies as well as the small ones. Unlike £ and 
1], it cannot be identified with any meaningful range of eddy sizes. However, 
results of numerical simulations are often characterized in terms of the microscale 
Reynolds number, Re>.., defined by 

Substitution for A from Equation (8 .4) leads to 

Re>. "'(k112 L€/v)112 

(8. 7) 

(8.8) 

where L"- k312 j E is the "dissipation length scale", actually the typical length 
scale of the stress-bearing motion used implicitly in all two-equation models. 
Now, L"- is of the same order as £ so it follows from Equation (8.8) that also 

-1/2 Re>. rv ReT (8.9) 

Thus although A is not a very meaningful length scale, Re>. is an alternative to 
the Reynolds number of the energy-containing eddies. Finally, the eddy turnover 
time, Tturnover, is simply the ratio of the macroscales for length, £ or L€, and 
velocity, k112, and is given by 

Tturnover "'f/k1/2 "'L€/k1/2 (8. 1 0) 

The eddy turnover time is a measure of the time it takes an eddy to interact with 
its surroundings. As can be seen from the definition of L"- it is also the reciprocal 
of the specific dissipation rate, w "' E/ k. 

A second important consideration is the spectral representation of turbulence 
properties (see Subsection 1 .3 .4 ), which replaces the vague idea of "eddy size." If 
K, denotes wavenumber, defined as 21r /wavelength, and E(K,)dK, is the turbulence 
kinetic energy contained between wavenumbers K, and K, + dK,, we can write 

1 -k _ -u'u' = 2 t t 
0 

00 

(8. 1 1) 

Recall that k is half the trace of the autocorrelation tensor, Rij, defined in Equa
tion (2.43), at zero time delay. Correspondingly, the energy spectral density 
or energy spectrum function, E(K,), is related to the Fourier transform of half 
the trace of Rij. In general, we regard a spectral representation as a decom
position into wavenumbers (K,). In loose discussions of "eddy size," we regard 

the reciprocal of K, as the eddy size associated with /'\,. Small K, equals large 
wavelength equals large eddies, and conversely. Of course turbulence is not a 

superposition of simple waves; any definition of an "eddy" based on observed 
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Figure 8 .1: Energy spectrum for a turbulent flow - log-log scales. 
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flow patterns will actually cover a range of wavenumbers, and is still vague. 
However the definition of spectral density and the associated analysis are pre
cise. The present discussion is simplified: see Tennekes and Lumley (1983) for 
a detailed discussion of energy spectra. 

Again using dimensional analysis, Section 1.3 .4 shows that, for wavenumbers 
small enough that viscosity does not affect the motion, but large enough that the 
overall dimensions of the flow such as boundary-layer thickness do not matter, 

1 1 
-«K,«f 'fJ 

(8 .12) 

where CK is the Kolmogorov constant. This is the famous Kolmogorov -5/3 
law that characterizes the inertial subrange. Figure 8 .1 shows a typical energy 
spectrum for a turbulent flow. With these preliminary remarks in hand, we are 
now in a position to discuss DNS, LES and DES in the next three sections. 

8.2 Direct Numerical Simulation 

A direct numerical simulation, or DNS for short, means a complete three
dimensional and time-dependent solution of the Navier-Stokes and continuity 
equations. The value of such simulations is obvious: they are, in principle, 
numerically-accurate solutions of exact equations of motion and in principle 
- the proper solution to the turbulence problem. From a practical standpoint, 
statistics computed from DNS results can be used to test proposed closure ap
proximations in engineering models. At the most fundamental level, DNS can 
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be used to obtain understanding of turbulence structure and processes that can 
be of value in developing turbulence-control methods (e.g., drag reduction) or 
prediction methods. DNS can also be viewed as an additional source of exper
imental data, taken with unobtrusive measuring techniques. This is especially 
useful for obtaining infotmation about essentially-unmeasurable properties like 
pressure fluctuations. 

All of these comments assume the DNS is free of significant numerical, and 
other, forms of error. This is a nontrivial consideration, and the primary concerns 
in DNS are related to numerical accuracy, specification of boundary and initial 
conditions, and making optimum use of available computer resources. In this 
section, we discuss these issues only briefly. For more detail at an introductory 
level, with extensive references to recent research work, see the review article by 
Moin and Mahesh (1998). As a final reminder, remember that even the numerical 
solution of the exact equations of motion requires detailed understanding of the 
physics of turbulence if the solutions are to be economical and accurate. 

Estimating the number of grid points and timesteps needed to perform an 
accurate DNS reveals the complexity of the problem from a computational point 
of view. As an example, consider incompressible turbulent flow in a channel of 
height H. The computational domain must be of sufficient extent to accommo
date the largest turbulence scales. In channel flow, eddies are elongated in the 
direction parallel to the channel walls, and their length A is known to be about 
2H. Also, in principle, the grid must be fine enough to resolve the smallest 
eddies whose size is of the order of the Kolmogorov length scale, ry. Assuming 
that at least 4 grid points in each direction are needed to resolve an eddy (since 
we need adequate resolution of derivatives), we estimate that the total number of 
grid points for uniform spacing, Nuniform. is 

Nuniform � 
A 3 

4 = 
1J 

8H 
1/4 3 

v3 (8 .13) 

Now, in channel flow, the average dissipation is E � 2u;_Um/ H where Um is 
the average velocity across the channel, and Umfur � 20. Substituting these 
estimates into Equation (8 .13), we arrive at 

� ( )9/4 Nuniform � llORer , (8 .14) 
v 

In practice, it is wasteful to use uniformly-spaced grid points since there are 
regions where E is small and the Kolmogorov length scale is much larger than 
it is near the surface where E is largest. By using stretched grids to concentrate 
points where the smallest eddies reside, experience [Moser and Moin (1984), 

Kim, Moin and Moser (1987)] shows that the factor of 110 in Equation (8 .14) 

can be replaced by about 3 .  Thus, the actual number of grid points typically 
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used in a DNS of channel flow, N vNs, is 

NvNs ;::;::: (3ReT)
914 (8.15) 

Similarly, the timestep in the computation, �t, should be of the same order as 
the Kolmogorov time scale, T (vIE) 112. Based on results of the computations 
done by Kim, Moin and Moser (1987), the timestep must be 

A 0.003 H 
l...l. t ;::;::: -

ReT uT 
(8.16) 

To appreciate how prohibitive these constraints are, consider the channel-flow 
experiments done by Laufer (1951) at Reynolds numbers of 1.23 · 104, 3.08 ·1 04 

and 6.16 · 104 and the experiment of Comte-Bellot (1963) at a Reynolds number 
of 2.3 · 105• Table 8.1 lists the number of grid points and timesteps required to 
perform a DNS, assuming the time required to reach a statistically-steady state 
is 1 OOH / U m ;::;::: 5H I uT. Clearly, computer memory limitations make all but the 
lowest Reynolds numbers considered by Laufer impractical with the computers 
of the early 21st century. The development of massively-parallel machines over 
the last decade has reduced execution times, but storage is still a problem, both 
during the computation and for later archiving of "fields" of raw data at selected 
timesteps. 

Table 8.1: Grid Point/Timestep Requirements for Channel-Flow DNS and LES. 

I ReH II ReT I NvNs I DNS Timesteps I NLes I 
1 . 23 . 1 0 4  360 6.7. 100 32000 6.1 · 1 0 °., 
3.08 . 10 4 800 4.0 . 10 7 47000 3.0 . 1 0 6  
6. 16 . 10 4 1450 1.5 . 10 8 63000 1.0 . 1 0 7  
2.30 . 10 5 4650 2. 1·10 9 ll4000 1.0 . 1 0 8  ..J. 

The computations of Kim, Moin and Moser (1987) provide an example of 
the computer resources required for DNS of the geometrically simple case of 
chrumel flow. To demonstrate grid convergence of their methods, they compute 
channel flow with ReT 180, corresponding to ReH ;::;::: 6000 using grids with 
2 . 106 and 4 . 106 points. For the finer grid, the CPU time on a Cray X/MP 
supercomputer was 40 seconds per timestep. The calculation was run for a total 
time 5H ( ur. and required 250 CPU hours. The same computation would take 
about 100 CPU hours on a 3-GHz Pentium-D personal computer (see problems 

section). 
Both second-order accurate and fourth-order accurate numerical algorithms 

have been used in DNS research to advance the solution in time. There are two 
primary concerns regarding numerical treatment of the spatial directions. The 



434 CHAPTER 8. NEW HORIZONS 

first is achieving accurate representations of derivatives, especially at the smallest 
scales (or, equivalently, the highest wavenumbers). Spectral methods Fourier 
series in the spatial directions can be used to insure accurate computation 
of derivatives. Finite-difference methods usually underestimate derivatives of a 
given velocity field, leading to inaccuracies in the smallest (dissipating) scales. 
The dissipation as such is set by the rate of energy transfer from the larger 
eddies, so the underestimated derivatives are compensated by an excess in spectral 
density at the highest wavenumbers to achieve the right value for the dissipation 
as expressed by the right-hand side of Equation ( 4.6). This is usually just called 
"numerical dissipation," but is in no sense an addition to the dissipation rate set 
by the energy transfer. 

Thus, the first concern in demonstrating grid convergence of a DNS is to 
verify that the energy spectrum, E(K) , displays a rapid decay, often referred to 
as the rolloff, near the Kolmogorov length scale, rJ. The second concern is to 
avoid a phenomenon known as aliasing. This occurs when nonlinear interactions 
among the resolved wavenumbers produce waves with wavenumbers greater than 
Kmax, which can be misinterpreted numerically. If special precautions are not 
taken, this can result in a spurious transfer of energy to small wavenumbers 
[Ferziger ( 1 976)] .  

While spectral methods are more accurate for computing derivatives. at the 
smallest scales, they are difficult to use with arbitrarily nonuniform grids. Be
cause of the wish to extend DNS and LES to more realistic geometries, bringing 
the need for more complicated grids, there has been a general swing towards 
finite-difference methods, but a higher order of accuracy is needed than for spec
tral methods. Unstructured grids, now well established in conventional CFD 
[e.g., Venkatakrishnan ( 1 996)], are being introduced into DNS and LES for 
complicated geometries, but they carry a further penalty in storage and CPU 
time. 

In their grid-convergence study, Kim, Moin and Moser ( 1 987) show that 
their energy spectra display the characteristic rolloff approaching wavenumber 
"' ::::::;, 1/ 'rJ where rJ is the Kolmogorov length scale. This corresponds to a wave
length of 2rrrJ ::::::; 61], roughly the top of the dissipating range. 

The primary difficulty with boundary conditions in any Navier-Stokes calcu
lation, DNS, LES, DES or Reynolds-averaged, is at open boundaries. Because of 
the elliptic nature of the problem, the flow at such boundaries depends on the un
known flow outside the computational domain. In LES and DNS this problem is 
circumvented by imposing periodic boundary conditions for directions in which 
the flow is statistically homogeneous (e.g., the streamwise and spanwise direc
tions in channel flow). Most simulations done to date have been homogeneous or 
periodic in at least one spatial direction, which has the additional advantage that 
statistics can be obtained by averaging over the homogeneous direction as well 
as over time, thus reducing the time sample needed to get converged stati stics. 
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Flows that grow in the streamwise direction in a nearly self-similar manner 
(e.g., equilibrium boundary layers) can be reduced to approximate homogeneity 
by a coordinate transformation [Spalart ( 1 986, 1 988, 1 989)] . Alternatives are to 
use the results of a previous simulation to give the incoming flow at the upstream 
boundary [Le, Moin and Kim (1 997)] or use a suitably-rescaled version of the 
outgoing flow at the downstream boundary [the "fringe" method of Spalart; see 
Bertolotti et al. ( 1 992)]. Finally one can add a synthetic random fluctuating 
velocity field to a prescribed mean-velocity field. After a few eddy-turnover 
times, the correct statistics evolve, but this may correspond to an unacceptably 
large downstream distance. 

In nonperiodic flows the downstream boundary condition is usually taken 
as zero streamwise gradient of all variables. This is acceptable if the statistics 
of the real flow are changing slowly in the streamwise direction, because this 
implies negligible upstream influence usually equivalent to validity of the 
boundary-layer approximation, which leads to parabolic equations. 

Solid boundaries, where the no-slip velocity boundary condition applies, pose 
no special problems for DNS. 

DNS results illustrate one of the curious features of turbulence and other 
chaotic systems. Suppose we generate a solution from a given set of initial 
conditions, and then repeat the computation with a very small perturbation in 
the initial conditions. We find that, after a few eddy-turnover times, the second 
solution, or realization, is very different from the first. However, in terms of all 
statistical measures, the two flows are identical ! This is the classical problem of 
predictability discussed, for example, by Sandham and Kleiser ( 1 992) (see also 
Section 8.5). It is a real phenomenon and has nothing to do with numerical error. 
Also, it occurs in everyday life, although usually with finite initial perturbations. 

As a simple example, two strangers in a crowd, initially side by side, tend to 
drift apart that is, a small difference in initial position tends to grow indef
initely, and the standard deviation of the difference, averaged over many trials, 
certainly grows. The public recognizes this in an empirical way: if one stranger 
steps on another's foot twice, the steppee is likely to suspect the stepper of doing 
it on purpose. Thus, while somewhat disconcerting to the mathematician, this 
phenomenon should come as no great surprise to the engineer. 

DNS matured rapidly during the 1 980's and continues to develop as more 
and more powerful computers appear. Although Reynolds numbers are usually 
well below those found in most branches of engineering, recent applications for 
simple geometries have been done for ever-increasing Reynolds numbers. Abe 
and Kawamura (2001 ) , for example, have done channel-flow simulations for 
ReH 2.4 · 104, which is nearly double the value achieved by Mansour, Kim 
and Main in 1 988. DNS data are currently available for many flows of interest 
to turbu lence researchers (from the NASA Ames Research Center, for example), 

and the list of applications continues to grow. 
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8.3 Large Eddy Simulation 

A Large Eddy Simulation, or LES for short, is a computation in which the large 
eddies are computed and the smallest, subgrid-scale (SGS), eddies are modeled. 
The underlying premise is that the largest eddies are directly affected by the 
boundary conditions, carry most of the Reynolds stress, and must be computed. 
The small-scale turbulence is weaker, contributing less to the Reynolds stresses, 
and is therefore less critical. Also, it is more nearly isotropic and has nearly
universal characteristics; it is thus more amenable to modeling. Recent reviews 
are rapidly proliferating, including Ferziger ( 1 996), Lesieur and Metais ( 1 996), 
Rodi ( 1997, 1998), Ghosal ( 1 999), Jimenez and Moser (2000) and Pitsch (2006) 
[focusing on combusting flows] . The comprehensive text by Sagaut and Getmano 
(2004) is devoted entirely to LES. 

Because LES involves modeling the smallest eddies, the smallest finite
difference cells can be much larger than the Kolmogorov length, and much larger 
timesteps can be taken than are possible in a DNS. Hence, for a given comput
ing cost, it is possible to achieve much higher Reynolds numbers with LES than 
with DNS, or conversely to obtain a solution at a given Reynolds number more 
cheaply. See Table 8 . 1  for a comparison of estimated DNS and LES grid point 
requirements in a simple flow. An actual example, for a more complex flow, 
is comparison of calculations of the flow over a backward-facing step by DNS 
[Le, Moin and Kim ( 1 997)] and by LES [Akselvoll and Moin ( 1 993)], both at 
the low Reynolds number of 5000 based on step height. The LES required 3% 
of the number of grid points needed for the DNS and the computer time was 2% 
of that for the DNS: agreement with experiment was equally good. 

Aside from the issue of the need to resolve the smallest eddies, the comments 
regarding DNS numerics, boundary and initial conditions in the previous section 
hold for LES as well. The primary issue in accuracy remains that of computing 
derivatives for the smallest scales (highest wavenumbers) resolved. The ultimate 
test of grid convergence is again the requirement that excessive energy must not 
accumulate in the smallest scales. The primary requirement is to get the dissi
pation rate right; details of the dissipating eddies are unimportant in LES. DNS 
nominally requires accurate simulation of the dissipating eddies, and the achieve
ment of this in the classical channel simulation of Kim, Moin and Moser ( 1 987) 
is verified by the accuracy of the dissipation-rate budget evaluated by Mansour, 
Kim and Moin ( 1 988). However, marginally-resolved DNS often includes some 
numerical dissipation. If spectral or pseudo-spectral methods are used, the same 
boundary-condition difficulties hold in both DNS and LES. 

A major difficulty in "Large" Eddy Simulation is that near a solid surface all 
eddies are small to the extent that the stress-bearing and dissipation ranges 
of eddy size overlap. If one requires LES to resolve most of the stress-bearing 
range, the grid spacing, and timestep, required by LES gradually fall towards that 
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needed for full DNS as the surface is approached. This is, of course, a serious 
limitation on Reynolds number for LES, and later we will discuss the ways in 
which it can be avoided. 

8.3.1 Filtering 

To understand the primary difference between DNS and LES, we must introduce 
the concept of filtering. Note first that the values of flow properties at discrete 
points in a numerical simulation represent averaged values. To see this explicitly, 
consider the central-difference approximation for the first derivative of a contin
uous variable, u ( x), in a grid with points spaced a distance h apart. We can 
write this as follows. 

u(x +h) - u(x- h) 
2h 

d 
dx 

1 
x+h 

2h x-h 
u(f,) df, (8. 1 7) 

This shows that the central-difference approximation can be thought of as an 
operator that filters out scales smaller than the mesh size. Furthermore, the 
approximation yields the derivative of an averaged value of u(x). 

There are many kinds of filters that can be used. The simplest type of filter 
is the volume-average box filter implemented by Deardorff ( 1 970), one of the 
earliest LES researchers. The filter is 

x+ � fl.x y-1- � fl.y z+ t fl.z 
ui(e, t) dt;dryd( (8 . 1 8) 

The quantity ui denotes the resolvable-scale filtered velocity. The subgrid
scale (SGS) velocity, u�, and the filter width, .6., are given by 

and (8. 1 9) 

Leonard ( 1 974) defines a generalized filter as a convolution integral, viz., 

(8 .20) 

The filter function, G, is normalized by requiring that 

(8.2 1 )  

In terms of the filter function, the volume-average box filter as defined in Equa
tion (8. 1 8) is 

G(x- .; ; .6.) = 1/.6.3, /xi- f,i/ < b..xi/2 
0 ,  otherwise (8 .22) 
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The Fourier transform of Equation (8.20) is Ui(K, t) 
and g represent the Fourier transforms of ui and G. 
implicitly filter with 

Q(r;,)Ui(K, t) where Ui 
Fourier spectral methods 

for (8.23) 

As an example, Orszag et al. [see Ferziger (1976)] use the .Fourier cutoff filter, 
• 

I.e., 

1 3 
sin (xi - l:,i)/ A 

G(x - e; A)= A3 i=l (xi - f,i)/ A (8.24) 

The Gaussian filter [Ferziger ( 1 976)] is popular in LES research, and is defined 
by 

G(x-e; A)= 
3/2 

lx - e l2 
exp -6 A2 (8.25) 

· . Many other filters have been proposed and used, some of which are neither 
isotropic nor homogeneous. In all cases however, the filter introduces a scale A 
that represents the smallest turbulence scale allowed by the filter. 

The filter provides a formal definition of the averaging process and separates 
the resolvable scales from the subgrid scales. We use filtering to derive the 
resolvable-scale equations. For incompressible flow, the continuity and Navier
Stokes equations assume the following fonn. 

&u. a 1 av- EPu· . = - - + v t 

Now, the convective flux is given by 

where 

(8 .26) 

(8.27) 

(8.28) 

(8 .29) 

Note that, with the exception of the Fourier cutoff filter [Equation (8 .24)], fil
tering differs from standard averaging in one important respect: 

(8.30) 
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i.e., a second averaging yields a different result from the first averaging. The 
tensors Lij, Cij and Rij are known as the Leonard stress, cross-term stress 
and the SGS Reynolds stress, respectively. · 

Leonard ( 1 974) shows that the Leonard-stress term removes significant energy 
from the resolvable scales. It can be computed directly and need not be modeled. 
This is sometimes inconvenient, however, depending on the numerical method 
used. Leonard also demonstrates that since ui is a smooth function, Lij can be 
computed in terms of its Taylor-series expansion, the first term of which is 

L "/£ >72 c- - ) ij � 2 v UiUj , 'Ye = 
• 

(8.3 1) 

Clark et al. ( 1 979) verify that this representation is very accurate, at low Reynolds 
number, by comparing with DNS results. However, as shown by Shaanan, 
Ferziger and Reynolds ( 1 975), the Leonard stresses are of the same order as 
the truncation error when a finite-difference scheme of second-order accuracy is 
used, and they are thus implicitly represented. 

The cross-term stress tensor, Cij, also drains significant energy from the 
resolvable scales. An expansion similar to Equation (8.3 1 )  can be made for 
Cij. However, most current efforts model the sum of Cij and Rij. Clearly, the 
accuracy of a LES depends critically upon the model used for these terms. 

We can now rearrange Equation (8 .27) into a more conventional form, 1 i .e., 

where 

au- a 1 aP a 
a 

t + a (uiuj) = --a + -a -
t Xj p Xi Xj 

Tij -(Qij-�QkkOij) 
P p + �pQkk<5ij 
Qii Rij + Cij 

Ou· 
If. t + Tij ax· J J 

(8.32) 

(8 .33) 

At this point, the fundamental problem of Large Eddy Simulation is evi
dent. Specifically, we must establish a satisfactory model for the SGS stresses 
as represented by the tensor Qij· To emphasize the importance of achieving 
an accurate SGS stress model, consider the following. In simulating the decay 
of homogeneous isotropic turbulence with 163 4096 and 323 32768 grid 
points, Ferziger ( 1 976) reports that the SGS turbulence energy is 29% and 20%, 
respectively, of the total. Thus, the sub grid scales constitute a significant portion 

of the turbulence spectrum. The various attempts at developing a satisfactory 
SGS stress model during the past half century resemble the research efforts on 

I Most LES practitioners reverse the sign of Ti.i · The notation chosen here is strictly for consistency 
with the rest of the text 
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engineering models discussed in Chapters 3 - 6. That is, models have been pos
tulated that range from a simple gradient-diffusion model [Smagorinsky (1 963)] , 
to a one-equation model [Lilly ( 1 966)], to the analog of a second-order closure 
model [Deardorff ( 1 973)] . Nonlinear stress-strain rate relationships have even 
been postulated [Bardina, Ferziger and Reynolds ( 1 983)] . Only the analog of the 
two-equation model appears to have been overlooked, most likely because the 
filter width serves as a readily-available length scale. 

8.3.2 Subgrid-Scale (SGS) Modeling 

Smagorinsky ( 1 963) wac;; the first to postulate a model for the SGS stresses. The 
model assumes the SGS stresses follow a gradient-diffusion process, similar to 
molecular motion. Consequently, Tij is given by 

(8 .34) 

where Sij is called the "resolved strain rate," vT is the Smagorinsky eddy 
viscosity 

(8.35) 

and C s is the Smagorinsky coefficient. Note that Equation (8.35) is akin to a 
mixing-length formula with mixing length C8!:l.. Obviously the grid scale !:l., or 

(!:l.1.6.2�3)1l3 if the steps in the three coordinate directions are different, is an 
overall scale of the SGS motion, but assuming it to be a unique one is clearly 
crude. If !:l. were in the inertial subrange of eddy size in which Equation (8 . 12) 
holds, and sufficiently larger than the Kolmogorov viscous length scale ry that 
the viscous-dependent part of the SGS motion was a small fraction of the whole, 
then no other length scale would be relevant and the Smagorinsky constant would 
be universal. This is rarely the case. 

For all of the reasons discussed in Chapter 3, the physical assumption behind 
the mixing-length fommla, that eddies behave like molecules, is simply not true. 
Nevertheless, just as the mixing-length model can be calibrated for a given class 
of flows, so can the Smagorinsky coefficient, C8. Its value varies from flow to 
flow, and from place to place within a flow. In the early days of LES, the basic 
Smagorinsky sub grid-scale model was widely used, C s being adjusted to get the 
best results for each flow [see e.g. Rogallo and Moin ( 1 984) who quote a range 

0. 10 < Cs < 0.24]. In the critical near-wall region, law-of-the-wall arguments 
-valid in well-behaved flows suggest that Cs should be a function of !:l.jy 
and an increasingly strong function of uTyjv as the latter decreases. However 
there seems to be no record of attempts to calibrate this function: virtually all 
users of the basic model keep C s constant throughout the flow. 
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There are two key reasons why the basic Smagorinsky model enjoys some 
degree of success. First, the model yields sufficient diffusion and dissipation to 
stabilize the numerical computations. Second, low-order statistics of the larger 
eddies are usually insensitive to the SGS motions. 

In an attempt to incorporate some representation of the dynamics of the 
sub grid scales, Lilly ( 1 966) postulates that 

(8.36) 

where q2 is the SGS kinetic energy, and C L is a closure coefficient. The sub grid
scale stress anisotropy now depends on the sign of the resolved strain rate, rather 
than on its magnitude as in the Smagorinsky formula. An equation for q2 can 
be derived from a moment of the Navier-Stokes equation, which involves several 
terms that must be modeled. This model is very similar to Prandtl' s one-equation 
model (Section 4.2), both in spirit and in results obtained. As pointed out by 
Schumann ( 1 975) who used the model in his LES research, it is difficult to 
conclude that any significant improvement over the Smagorinsky model can be 
obtained with such a model. 

Germano et al. ( 1 99 1 )  [see also Ghosal et al. ( 1 995), Yang and Ferziger ( 1 993) 
and Carati and Eijnden ( 1 997) for later developments] ,  proposed what is known 
as a Dynamic SGS Model. Their formulation begins with the Smagorinsky 
eddy-viscosity approximation. However, rather than fixing the value of Cs a 
priori, they permit it to be computed as the LES proceeds. This is accomplished 
by using two filters, the usual LES filter at K Kmax and the "test filter" which 
examines the resolved fluctuations between some lower wavenumber, usually 
Kmax/2, and Kmax itself. Then, the subgrid stresses are represented by rescaling 
the resolved stresses in the test-: filter band. Usually, this is done by evaluating the 
Smagorinsky coefficient, C 8, from the resolved fluctuations in the test-filter band, 
and then using the same coefficient to evaluate the SGS stresses at the same point 
in space on the next timestep, for example. This "bootstrap" procedure could be 
rigorously justified on the same grounds as for the Smagorinsky fotmula, above. 
The test-filter band would have to lie in the inertial subrange and Kmax would 
have to be far below the viscous region. 

Dynamic models undoubtedly work surprisingly well, even in cases where 
rigorous justification is not valid. Jimenez ( 1 995) points out that the essential 
feature of an SGS model is to dissipate the kinetic energy cascaded down to it. 
Jimenez and Moser (2000) elaborate further on the efficacy of dynamic models. 
On the one hand, any eddy-viscosity model assumes the subgrid stresses are 
"perfectly related" to the strain rate, even though they are essentially uncorrelated. 
On the other hand, dynamic models are "very robust" to this fundamental error in 
physics, largely because "the formula for their eddy viscosity contains a sensor 
that responds to the accumulation of energy in the high wave numbers of the 
spectrum before it contaminates the energy containing range." 
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The dynamic-model concept has been implemented with intrinsically more re
alistic models than Smagorinsky's. Pomraning and Rutland (2002) and Krajnovic 
and Davidson (2002), for example, have done computations with the dynamic 
one-equation model devised by Menon and Kim ( 1 996). The equation they use 
is loosely based on the subgrid kinetic energy. 

However, it is clear that, whatever SGS model is used, the test-filter concept 
implies that the structure of the SGS turbulence is similar to that in the test-filter 
band, which will not be the case when the local turbulence Reynolds number, 
ReT, is small, as it is near a solid surface. Unfortunately, this is the most critical 
region for an SGS model. Unless the LES is to collapse into DNS, the SGS 
model must carry a significant portion of the Reynolds stresses. 

It is a symptom of the inadequacy of the Smagorinsky mixing-length formula 
that dynamic-model values of C s evaluated from the calculated motion in the 
test-filter band fluctuate wildly in space and time. "Dynamic" is all too apt a 
name for this model when used with the Smagorinsky formulation. A particular 
difficulty ari sing from this is that if the implied eddy viscosity is negative, kinetic 
energy can be transferred from the SGS motion to the resolved scales. This is, 
in principle, the real-life phenomenon of backscatter, i.e., reverse cascading of 
energy from smaller to larger eddies. The statistical-average energy transfer at 
high wavenumber is always towards the dissipating range, but this is not true 
instantaneously. However, negative eddy viscosity usually leads to instability of 
the calculation because there is nothing in the Smagorinsky fom1ula to limit the 
depletion of SGS kinetic energy. A simple fix is to average C 8 over a direction 
of homogeneity of the flow. As an alternative, Ghosal et al. ( 1 995) and others 
have modeled an equation for SGS kinetic energy and used it to cut off the SGS 
eddy viscosity when the SGS energy falls to zero. 

A subgrid-scale model with some general similarities to the dynamic model 
has been suggested by Domaradzki and Saiki ( 1 997). The resolved motion is 
interpolated on a length scale of half the grid size, and the phases of the resulting 
subgrid modes are adjusted to correspond to the phases of the subgrid modes that 
would be generated (in a DNS) by nonlinear interactions of the resolved modes 
in the LES. This "bootstrap" procedure seems to be rigorously justifiable and 
initial results are promising. 

8.3.3 "Off the Wall" Boundary Conditions 

If LES is to be applied to wall flows at indefinitely high Reynolds numbers, the 
viscous sublayer or viscous wall region (typically u7yjv < 30 see Figure 1 .7) 
must be excluded from the main computation. Moreover, the distance of the first 
LES grid point from the solid surface at y y2 must be independent of Reynolds 
number. It must be set at some suitable fraction of the shear-layer thickness, 8, 
so that the total number of grid points is also independent of Reynolds number. 
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We use y2 to denote the first LES point from the wall for conformity with the 
rest of the book, irrespective of the arrangements y < y2 • If the first grid 
point is set at a given value of uryfv and if, as usual, the y step increases 
proportional to y, the number of grid points required in the y direction increases 
proportional to f. no+ where o+ UrO I v is the sub layer-scaled flow width (see 
problems section). This implies that the computer work required (number of grid 
points in the three-dimensional domain divided by timestep) will vary as (£no+ )4 
approximately. Thus, a factor of l 0 increase in Reynolds number means a factor 
of 30 increase in computer work. 

Allowing the SGS model to bear more and more of the Reynolds stresses as 
the wall is approached [Speziale ( 1 998)] does not remove the Reynolds-number 
dependence of the grid-point count. This is so even if the SGS model limits to 
a reliable Reynolds-Averaged Navier Stokes (RANS) model for a coarse mesh. 
The mesh must still be graded, so the number of points needed in the y direction 
is sti ll proportional to f. no+, with a different proportionality constant, even for 
full RANS calculations. For example, in Spalart 's ( 1988) boundary-layer DNS, 
ury2/ v is between 0.2 and 0.3, while most low-Reynolds-number RANS models 
require UrY2/v < 1. So, there is not usually an order-of-magnitude difference 
between the number of points in the y direction for simulations and for RANS 
calculations (RANS models can of course use much larger steps in x and z). 

The current fashion in RANS modeling is integration to the wall rather than 
the use of off-the-wall boundary conditions (wall functions in RANS model
ing terminology). For the geometrical-progression grid with grading ratio, 
k9 1.14 and y;t < 1 recommended for typical computations with Program ED
DYBL (see Appendix C), about 50 points are needed up toy 8 at momentum
thickness Reynolds number 14 10  ( o+ 650). The number increases by 1 7- 1 8  
points for every factor of 1 0 increase in o+. Spalart' s DNS at this Reynolds 
number used 62 points up to y 8. 

Note also that the above discussion is phrased, qualitatively at least, in "law
of-the-wall" language. However, if LES is to be a significant improvement on 
RANS models, it must deal with strongly-nonequilibrium flows, notably sepa
rated flows, in which the simple law of the wall is not valid. Indeed the status of 
the law of the wall is uncertain even in moderately three-dimensional boundary 
layers . 

The earliest LES of a "laboratory" flow [Deardorff ( 1 970)] used the log
arithmic law of the wall for the mean velocity as an instantaneous boundary 
condition. This crude approach was followed by other early workers. However, 
experiments by Robinson ( 1 986) showed that the instantaneous friction velocity 
is not a good scale for the instantaneous velocity in the logarithmic region. 

If LES is to be applied to high-Reynolds-number engineering flows, not 
only rnust the "wall" boundary condition be applied at a distance y2 from the 
surface which is a (not-too-small) fraction of 8, but any calculation for the region 
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0 < y < Y2 should be Reynolds-number independent. Quantitative use of law-of
the-wall concepts is not acceptable in the long term. For most purposes, details 
of the flow in 0 < y < y2 will not be important as long as the surface-flux rates 
(of momentum, heat and possibly mass) can be related to those at y y2• 

Piomelli, Yu and Adrian ( 1 996), Cabot ( 1 997) and Baggett ( 1997) have stud
ied "off the wall" boundary conditions. On the one hand, used with care, the 
instantaneous log law works satisfactorily for simple flows. On the other hand, 
Cabot found it to be unsatisfactory for separated flows such as the backward
facing step (where the law of the wall does not apply). 

8.3.4 Applications 

Estimates for the numbers of grid points, and computing times, needed for LES 
calculations of, say, the flow over a complete aircraft [e.g., Spalart et al. ( 1 997), 
Moin and Kim ( 1 997)] lie far beyond the capability of current computers, even 
if one assumes that a satisfactory "off the wall" boundary condition can be 
found. However, current Reynolds-averaged models perform acceptably well in 
two-dimensional or mildly three-dimensional boundary layers not too close to 
separation that is, in most of the turbulent flow over an aircraft. Something 
better is needed in critical areas, such as wing-body junctions, tip vortices and 
separated flows. If LES is to be used in such areas, patched to a Reynolds
averaged calculation for the rest of the flow, some means is needed for providing 
time-dependent boundary conditions at the upstream end, and the sides, of the 
LES computational domain. This may involve enlarging the LES domain so 
that it considerably overlaps the region of reliable Reynolds-averaged prediction, 
imposing rough-and-ready boundary conditions at the edges of this domain, and 
then rescaling the LES in some way so that its statistics match those of the 
Reynolds-averaged model on the boundary of reliability of the latter. Spalart et 
al. ( 1997) suggest Detached Eddy Simulation or DES, combining Reynolds
averaged models in the boundary layers and coarse-mesh LES after a massive 
separation. We will discuss this approach in the next section. 

Other engineering applications are less demanding than aircraft in terms of 
Reynolds number, but may be more demanding in terms of complex flow patterns. 
LES is likely to be applied first to internal flows. 

Combustion is notoriously difficult to model at the Reynolds-averaged level, 
and fine-mesh DNS with the large number of species equations required for a 
realistic combustion model is currently out of the question for engineering use. 
Therefore, there is some interest in LES for combustion. Clearly the subgrid-scale 
model has to reproduce the statistics of fine-scale mixing of reactants, leading to 
the essentially molecular diffusion that finally brings the reactants together, and 
this seems a very severe requirement. Veynante and Poinsot ( 1 997) and Pitsch 
(2006) review recent LES studies of combusting flows. 
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Two-phase flows [see Crowe et al. ( 1 996) for a review] are central to many 
processes in technology and nature, from combustion of droplets or particles to 
cloud physics and bubble flows in fluidized-bed reactors. Several DNS studies 
have been reported. LES, with the need to add sub grid-scale motion of particles 
or bubbles to the larger-scale computed trajectories, is a longer-term prospect. 
Wang and Squires ( 1 996) report good agreement between LES and DNS. 

Compressible flow and heat transfer present no special difficulties to LES 
except for the presence of more equations to solve. Extension of subgrid-scale 
models to variable-density flows is straightforward and true compressibility ef
fects in the weak small-scale motion are likely to be negligible. The review by 
Knight et al. (2003) includes results of LES applications to flows that include 
shock-induced boundary-layer separation. Figure 8.2 (a), for example, shows the 
convoluted shape of the shock wave for Mach 2.88 flow into a 25° compression 
comer. Figure 8.2 (b) shows results for an expansion followed by a compression, 
again at Mach 2.88. Despite having a Reynolds number in the LES that is sig
nificantly lower than in the experiments, computed and measured mean surface 
pressures are reasonably similar. The close agreement in this case is very likely 
due to the fact that this flow is remarkably insensitive to Re}nolds number. 

(a) Flow into a 25° comer: 
Instantaneous shock structure 
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Figure 8.2: Results of LES applications to Mach 2.88 compression-corner jlmt•s. 

[Figure provided by D. D. Knight.] 

In conclusion, LES holds promise as a future design tool, especially as com
puters continue to increase in speed and memory. Intense efforts are currently 

focused on devising a satisfactory SGS stress model, which is the primary defi
ciency of the method at this time. Even if LES is too expensive for modem design 
efforts , results of LES research can certainly be used to help improve engineering 
models of turbulence. The future of LES research appears very bright. 
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8.4 Detached Eddy Simulation 

Spalart et al. ( 1 997) introduced the Detached Eddy Simulation (DES) method as 
a cost-effective procedure that treats the largest eddies through a conventional 
LES, while handling boundary layers and thin shear layers with the conventional 
RANS approach. In practice, cell spacing, b., in a DES is of the same order of 
magnitude as the boundary-layer thickness. 

One way of viewing DES is as an extension of a standard turbulence model 
based on Reynolds averaging into more complex flows. This is made possible by 
computing the geometry-dependent, three-dimensional eddies whose details are 
lost in Reynolds-averaging. Another way of viewing a DES is as a method for 
resolving the difficult task of establishing "off-the-wall" boundary conditions, 
with the hope that the DES converges toward an LES as the grid is refined. The 
discussion of "DES-blending functions" below strongly suggests that the latter 
view is  unrealistic for DES as currently implemented. 

As with DNS and LES, accurate numerical methods are imperative, espe
cially for the LES part of the computation. Constantinescu and Squires (2000), 
for example, use "fifth-order accurate, one-point biased differences" in treat
ing the convective terms for the momentum and turbulence-transport equations, 
while using conventional second-order accurate differencing for all other terms. 
Accurate methods have been devised to treat both inflow [Xiao, Edwards and 
Hassan (2003a)] and outflow [Schluter, Pitsch and Moin (2005)] conditions for 
DES applications. 

The RANS part of the computation requires selection of a suitable turbulence 
model. Most studies to date have been done with the Spalart-Allmaras ( 1 992) 
one-equation model, a k-w model or the Robinson et al. ( 1 995) k-(, (enstrophy) 
model. 

8.4.1 DES-Blending Functions 
' 

A crucial ingredient in the DES methodology is the way the computation dif
ferentiates between the RANS and LES portions of the computation. Roughly 
speaking, we have two critical length scales. One is the effective turbulence 
length scale implied by the model, fRANs, i.e., 

fRANS Vk/W (8.37) 

The other is the local finite-difference cell size, b., so that 

(8.38) 

Cells in which fRANs < fLEs are treated as part of the "subgrid" and deemed 
unresolvable. The hybrid RANS model is used as an effective subgrid scale 
(SGS) model. 
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The way in which we distinguish the appropriate length scale and computa
tional mode (RANS or LES) is called blending. Although the terminology has 
been adopted by DES researchers, it holds potential for confusion. That is, the 
nomenclature "blending functions" was originally used to make k-w model clo
sure coefficients vary from one set of values near a solid boundary to another set 
near turbulent/nonturbulent interfaces [ cf. Menter ( 1 992c) or Hellsten (2005)]. 
To avoid confusion here, we will refer to "DES-blending functions." 

The most popular way of blending in current usage is to modify the dissipa
tion term in the RANS model. For the Spalart-Allmaras model, this means the 
equation for the working variable, D, which is proportional to the eddy viscosity, 
Vr, is written as (see Section 4.2) 

av u av 
at 

+ j 
axj 

+ 

--

d 

(8.39) 

-

In the original Spalart-Allmaras model, the quantity d is the distance to the 
-

nearest surface, d. For DES applications, d is defined by 

-

d min(d, CDEsi:l.) (8 .40) 

where L:l. is the size of the smallest resolvable scale. Also, C DEs 0.65 is a 
closure coefficient whose value has been determined by results of homogeneous 
turbulence computations. 

In a similar spirit, most researchers rewrite the turbulence kinetic energy 
equation of the k-w model as 
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axj 

-
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* kw - red fl. 
J 

a 
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* 
) ak 

ax · 
l/ + a Vy 

ax · J J 
(8.4 1 )  

The constant Cd 0.01 and the function r have been introduced to effect the 
DES-blending. Xiao, Robinson and Hassan (2004) use a similar procedure with 
their k-(, model in which ( is the modeled enstrophy of the turbulence. They 
also include the function r in the equation for the eddy viscosity according to 

(8 .42) 

where C8 0 .01  is a closure coefficient. As we will see below, the function r 

has a strong effect on turbulence-model predictions. 
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It is a straightforward exercise to demonstrate that, when production balances 
dissipation in either of these models, the eddy viscosity simplifies to an effective 
Smagorinsky-type model, viz., 

(8 .43) 

where C s is an effective Smagorinsky coefficient that depends on the turbulence 
model's closure coefficients. 

Ideally, the DES-blending procedure would have little impact on a RANS 
model's predictions in regions where the RANS model yields flow-property val
ues that are in reasonably close agreement with measurements. The recent study 
by Xiao, Edwards and Hassan (2004) provides an example of how a DES is 
capable of corrupting a very good RANS solution. In their study, they assess 
three different DES-blending functions to determine the effect on a DES for two 
computations of supersonic flow into a compression comer. The functions tested 
are all of the fot m 

r tanh(ry2 ) (8 .44) 

The three different DES-blending functions differ in the choice of the parameter 
• "7, VlZ., 

fvk 
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l\i'S I ' 

d Distance to the nearest surface 

Integral scale : £<-

k -
( 

(8.45) 

The various lengths appearing in Equation (8 .45) are the Von Karman length, 
fvk. the Taylor microscale, .A, and the dissipation length, £€. 

Figures 8 .3  (a) and (b) show the effect of r vk and r A (based on fvk and 
£€, respectively) on computed surface pressure for the two compression-comer 
flows. Although not shown, the DES-blending function based on distance to the 
nearest surface produces inferior solutions. Ironically, DES results actually show 
greater discrepancies from measurements than the pure k-( model, especially 
over the separation bubble. 

Xiao, Edwards and Hassan provide a clue to why, rather than providing an 
improved solution, the DES yields the opposite. The clue lies in the behavior of 
the eddy viscosity, which is shown in Figure 8.3 (c) for the 20° compression cor
ner. As shown, all three DES-blending functions make the RANS eddy viscosity 
very small compared to the value it would have in a pure RANS computation 
for y+ > 500, which is well below the boundary-layer edge. This is, of course, 
necessary to avoid polluting the LES part of the computation. However, there 
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is a steep price that has been paid. Specifically, the RANS model's solution is 
dramatically altered not only in the outer part of the boundary layer, but in the 
near-wall region as well. That is, use of the DES-blending function changes the 
RANS model in a way that defeats some of its strengths . 
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Figure 8 .3 :  Results of DES applications to supersonic compression-corner flows. 
[From Xiao, Edwards and Hassan (2004) Copyright © AL4A 2004 Used 
with permission.] 

This problem was anticipated by Spalart et al. ( 1 997), who warned that once 
the grid spacing becomes smaller than about half the boundary-layer thickness, 
the DES-limited eddy viscosity simultaneously corrupts the RANS model and 
precludes LES behavior. The net result is total Reynolds stresses that are repre
sentative of neither the RANS model nor the LES. 
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We can use Program DEFECT (see Appendix C) to illustrate the point. The 
following computations implement yet another DES-blending function, i.e., the 
one recommended by Menter [see Xiao, Edwards and Hassan (2000b)] ,  viz., 

r -- 1 - tanh ry4 (8 .46) 

where 

' 2 ' y 
(8 .47) 

500v 

w 

The quantity 11 is kinematic molecular viscosity and y denotes distance nonnal 
to the surface. For the present analysis we are sufficiently far above the viscous 
sub layer that molecular viscosity is of negligible importance to the RANS model 
so that 

Vk/W 1 fRANS = = 
{J*y {3* y 

(8.48) 

Figure 8.4 compares the computed wake-strength parameter, n, with the 
baseline value of the Wilcox ( 1998) k-w model for constant-pressure and adverse 
pressure gradient cases. The computations use the values of r and rJ defined in 
Equations (8 .46) and (8.48). The alternative proposals for r in Equation (8.45) 
give results are similar to those presented in Figure 8.4. 
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Figure 8 .4: Computed wake-strength parameter, H, for the Wilcox (1998) k-w 
two-equation RANS model; Vr not modified, - - - Vr modified. 

We obtain somewhat different results depending on whether or not Equa
tion (8 .42) is used to modify the kinematic eddy viscosity, Vr . As shown, when 
we use Equation (8 .42), the better the resolution of the flow, i.e., as � becomes 
smaller, the greater the distortion of the baseline model's predicted value for H. 
When we use the value of Vr as predicted by the RANS model, the k-w model' s  
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predictions are essentially insensitive to ..6.. However, the computed value of IT 
lies far below the baseline k-w model's  solution even when ..6. becomes very 
large compared to the entire boundary layer thickness! Although results are not 
included here, the Spalart-Allmaras model displays the same type of behavior. 

This limitation on DES occurs because, until very recently, the RANS models 
used depend upon ..6.. Spalart et al. (2006), by introducing an algebraic function to 
retain RANS within the boundary layer when ..6. < 6, have suggested a remedy for 
this problem that they refer to as Delayed Detached Eddy Simulation (DDES). 

8.4.2 Applica 

There is a growing list of successful DES applications to both research-oriented 
problems to very complicated industrial and military applications. Focusing first 
on a relatively simple research-oriented application, consider the flow on the 
base of a cylinder in a Mach 2.5 stream. Herrin and Dutton ( 1 994) found 
experimentally that the pressure coefficient is nearly constant over the entire base 
region. By contrast, conventional RANS models predict a pressure coefficient, 
Cp, that varies with radial distance. Figure 8.5 compares computed and measured 
Cp for a DES based on the Spalart-Allmaras model [Forsythe et al. (2002)]. 
For reference, the figure includes results obtained with the Wilcox ( 1 998) k-w 
model, the Wilcox ( 1 998) Stress-w model and the RNG k-E model [Papp and 
Ghia (200 1 )] .  The DES clearly reproduces the experimentally-observed constant 
base pressure, which is the feature that has eluded RANS models. 
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Another major success is the accurate prediction of the drag force on Ahmed's 
body, the simplified automobile-like geometry experimentally documented by 
Ahmed et al. ( 1 984). Recall from Section 4. 1 0  that the Standard k-E model 
predicts a drag coefficient that is 30% higher than measured. Kapadia, Roy and 
Wurtzler (2003) have perfmmed a DES based on the Spalart-Allmaras model 
for Ahmed's body with an after-body slant angle of 25°. Figure 8.6 compares 
iso-surfaces of zero streamwise velocity for the DES and a pure RANS computa
tion with the Spalart-Allmaras model. The presence of large, unsteady counter
rotating vortices dominate in the wake of the body features that are not present 
in the RANS computation. The DES drag coefficient is within 5% of the mea
sured value. 

(a) Reynolds Averaged Navier Stokes (b) Detached Eddy Simulation 

Figure 8.6:  !so-surface of zero streamwise velocity for flow past Ahmed's body. 
[From Kapadia, Roy and Wurtzler (2003) Copyright © AIAA 2003 Used 
with permission.] '" 

The intense interest in DES is driven by its amenability to very complicated 
applications such as flow around an airplane. Such simulations have been and 
are continuing to be done by numerous researchers. Blessed by much shorter 
computing times than LES, the method holds great promise for enhancing our 
ability to use DES in a manner that can help in developing new designs. 

8.5 Chaos 

Our final topic is chaos, a mathematical theory that has attracted considerable 
attention in recent years. At the present time, no quantitative predictions for 
properties such as the reattachment length behind a backward-facing step or 
even the skin friction on a flat plate have been made. Hence, its relevance to 
turbulence modeling thus far has not been as a competing predictive tool. Rather, 
the theory's  value is in developing qualitative understanding of turbulent-flow 
phenomena. 
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Chaos abounds with colorful terminology including fractals, folded towel 
diffeomorphisms, smooth noodle maps, homeomorphisms, Hopf bifurcation 
and the all-important strange attractor. Chaos theory stretches our imagination 
to think of noninteger dimensional space, and abounds with marvelous geomet
rical patterns with which the name Mandelbrot is intimately connected. 

In the context of turbulence, the primary focus in chaos is upon nonlin
ear dynamical systems, i .e., a coupled system of nonlinear ordinary differential 
equations. Mathematicians have discovered that certain dynamical systems with 
a very small number of equations (degrees of freedom) possess extremely compli
cated (chaotic) solutions. Very simple models have been created that qualitatively 
reproduce observed physical behavior for nontrivial problems. For example, con
sider an initially motionless fluid between two horizontal heat-conducting plates 
in a gravitational field. Now suppose the lower plate is heated slightly. For small 
temperature difference, viscous forces are sufficient to suppress any mass motion. 
As the temperature is increased, a threshold is reached where fluid motion begins. 
A series of steady convective rolls forms, becoming more and more complicated 
as the temperature difference increases, and the flow ultimately becomes time
dependent and then nonperiodic/chaotic/turbulent. This is the Rayleigh-B�nard 
instability. 

One of the famous successes of chaos theory is in qualitatively simulating 
the Rayleigh-Benard flow with the following three coupled ordinary differential 
equations 

dX 
dt = (Y - X)jPrL 

dY 
dt = -X Z + r X - Y 
dZ XY - bZ 
dt = 

(8 .49) 

The quantity PrL is the Prandtl number, b and r are constants, and X, Y and 
Z are related to the streamfunction and temperature. The precise details of the 
model are given by Berge, Pomeau and Vidal ( 1 984), and are not important for 
the present discussion. What is important is that this innocent-looking set of 
equations yields a qualitative analog to the convection problem, including the 
geometry of the convection rolls and a solution that resembles turbulent flow. 

The central feature of these equations is that they describe what is known 
as a strange attractor. This particular attractor was the first to be discovered 
and is more specifically referred to as the Lorenz attractor. For the general 
case, in some suitably defined phase space in which each point characterizes the 
velocity field within a three-dimensional volume (X, Y and Z for the Lorenz 
attractor), the dynamical system sweeps out a curve that we call the attractor. 
The concept of a phase space is an extension of classical phase-plane analysis of 
ordinary differential equations [c.f. Bender and Orszag ( 1 978)] . In phase-plane 
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analysis, for example, linear equations have critical points such as the focus, 
the node and the saddle point. For a dynamical system, if the flow is steady, 
the "curve" is a single point, because the velocity is independent of time. If 
the flow is periodic in time the curve is closed and we have the familiar limit 
cycle. The interesting case in chaos is the unsteady, aperiodic case in which the 
curve asymptotically approaches the strange attractor. If the dynamical system is 
dissipative, as the Lorenz equations are, the solution trajectories always converge 
toward an attractor. Additionally, a slight change in the initial conditions for X, 
Y and Z causes large changes in the solution. 

Chaos theory puts great emphasis on the strange attractor, and one of the 
primary goals of chaos research is to find a set of equations that correspond to 
the turbulence attractor. A dynamical regime is chaotic if two key conditions 
are satisfied. 

1 .  Its power spectrum contains a continuous part, i.e., a broad band, regardless 
of the possible presence of peaks. 

2. The autocorrelation function goes to zero in finite time. 

Of course, both of these conditions are characteristic of turbulence. The latter 
condition means there is ultimately a loss of memory of the signal with respect 
to itself. This feature of chaos accounts for the strange attractor's sensitive de� 
pendence on initial conditions. That is, on a strange attractor, two neighboring 
trajectories always diverge, regardless of their initial proximity, so that the tra
jectory actually followed by the system is vety sensitive to initial conditions. In 
chaos studies, this is known as the butterfly effect the notion that a butterfly 
flapping its wings in Beijing today can change storm systems in New York next 
month.2 It goes by the more formal name of predictability and was mentioned 
in Section 8 .2 in discussion of the sensitivity of DNS and LES to initial condi
tions. The predictability horizon is the time beyond which predictions become 
inaccurate, however precise the calculations. Ruelle ( 1 994 ), in a useful review 
of possible applications of chaos theory, points out that the motion of the planets 
in our Solar system is chaotic, with a predictability time of about 5 million 
years only about 20000 times the orbital period of (the recently demoted 
"dwarf-planet") Pluto. 

While all of these observations indicate there may be promise in using chaos 
theory to tackle the turbulence problem, there are some sobering realities that must 
be faced . The broad spectrum of wavelengths in the turbulence spectrum, ranging 
from the Kolmogorov length scale to the dimension of the flow, is far greater 

2 Although this is a colorful way to describe sensitivity to initial conditions, it is based on a gross 
exaggerati<Jn. To alter a storm system, the butterfly would have to trigger a substantial amount of 
backscatter, i.e., cause energy to cascade from the very smallest eddies to the energy-bearing eddies. 
Such an event is highly improbable. 
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than that of the dynamical systems that have been studied. Hence, as deduced by 
Keefe (1990) from analysis ofDNS data, the dimension of the turbulence attractor 
(in essence, the number of equations needed to describe the attractor) must be 
several hundreds even at Reynolds numbers barely large enough for turbulence 
to exist. It seems essentially unlikely that a low-dimensional dynamical system 
can emulate turbulence to engineering standards of accuracy. 

The layman-oriented book by Gleick (1 988) provides an excellent introduc
tion to this fascinating theory in general. See also the abovementioned short 
review by Ruelle (1 994). As a more focused reference, Deissler (1 989) presents 
a review of chaos studies in fluid mechanics. 

8.6 Further Reading 

Fluid dynamics is sometimes called a "mature science," but the capabilities of 
CFD arc expanding rapidly as computer power increases, and the subject will 
have advanced considerably before this edition of Turbulence Modeling for CFD 
is replaced. Many bibliographies such as In spec (general physical science) and 
Ei Compendex (engineering) are available on the Internet, generally via site 
licenses to institutions. A selected bibliography, with abstracts, of turbulence · 

and related subjects is freely available on the World Wide Web at 

http://navier.stanford.edu/bradshaw/resp_b.html 

Maintained by Prof. Peter Bradshaw, this bibliography goes back to 1980, with 
some earlier references, and is updated periodically. The reader who wishes to 
remain up to date should use all of these resources. 

• 
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Problems 

8.1 To help gain an appreciation for how much computing power is needed for a DNS, 
consider the following. Table 8 . 1  lists the number of grid points and timesteps required to 

perfonn a DNS for channel flow as a function of Reynolds number. Evaluate the amount 

of 3-GHz Pentium-D microcomputer CPU time needed to do a single multiplication at 
each grid point and timestep for the four Reynolds numbers listed in the table. Assume the 

microcomputer is capable of 250 megaflops, where a flop is one floating-point operation 

(multiply, divide, add or subtract) per second. Express your CPU-time answers in hours. 

8.2 A DNS of channel flow with Re.,. = 180 using 4 · 106 grid points requires 250 hours of 

CPU time on a Cray XIMP. The computation runs for a total time, Tmax = 5Hju.,. . You 
can assume a Cray XJMP operates at 100 megaflops, where a flop is one floating-point 

operation (multiply, divide, add or subtract) per second. 

(a) Estimate the number of timesteps taken in the computation. 

(b) Ignoring time spent reading and writing to disk, estimate the number of floating
point operations per grid point, per iteration. 

8.3 Assume a DNS of channel flow with Re.,. = 180 using 4 · 106 grid points requires 225 

hours of CPU time and 25 hours of disk 110 time on a Cray XJMP. When the "teraflop" 

computer becomes a reality, if its disk 110 time is 1 000 times faster than that of the 1 00-
megaflop XIMP, how much total computing time will be needed for this computation? 

8.4 To help gain an appreciation for how much computer memory is needed for a DNS and 
an LES, consider the following. Table 8. 1 lists the number of DNS and LES grid points 

for channel flow as a function of Reynolds number. There are three velocity components 

and, on a 64-bit computer, each requires 8 bytes of memory. Compute the amount of 
memory needed to hold all of the velocity components in memory for the four Reynolds 

numbers listed in the table. Express your answers in megabytes, noting that there are 

10242 bytes in a megabyte. 

8.5 This problem focuses on comparative grid requirements for LES and RANS. 

(a) Assume the first grid point above a solid surface, y = y2 , is located at the outer 
edge of the viscous wall region, u.,.y2 jv = 30. Also, assume that a simple 

expanding grid with Yn+l = k9yn is used in Y2 < y < 8. Verify that the number 

of grid points in the y direction is 1 + £n[u.,.8 /(30v)] / £nk9 . Start by showing that 

kn-2 Yn = g Y2 · 

(b) Deduce that if k9 = 1 . 14, as in a coarse-grid computation with Program EDDYBL 
(see Appendix C), a factor of 1 0  increase in u.,.8jv requires 1 8  more profile points. 

(c) Near the stem of a ship 300 m long traveling at 1 0  m/sec (corresponding to a 

Reynolds number based on length of 109), u.,. 8jv ;:::; 1 . 5  · 105 . Show that if 
k9 = 1 . 14 and Yi = 30 (wall function for RANS or off-the-wall boundary con

dition for LES), about 66 points are needed in the y direction. Also show that if 

Yt = 1 (integration to the wall), about 92 points are needed. 
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8.6 Assuming production balances dissipation in the LES region, detennine the effective 

Smagorinsky constant, Cs , implied by the k-w model as defmed in Equations (8.4 1 )  and 

(8.42). Assume the flow is incompressible and express your answer as a function of Cs 
and Cd . 



458 CHAPTER 8. NEW HORIZONS 



• • 

es1an SIS 

The central point of view of tensor analysis is to provide a systematic way for 
transforming quantities such as vectors and matrices from one coordinate system 
to another. Tensor analysis is a very powerful tool for making such transfor
mations, although the analysis generally is very involved. For our purposes, 
working with Cartesian coordinates is sufficient so that we only need to focus 
on issues of notation, nomenclature and some special tensors. This appendix 
presents elements of Cartesian tensor analysis. 

We begin by addressing the question of notation. In Cartesian tensor analysis 
we make extensive use of subscripts. For consistency with general tensor-analysis 
nomenclature we use the terms subscript and index interchangeably. The com
ponents of an n-dimensional vector x are denoted as X1 , x2, • . .  , Xn. For exanl
ple, in three-dimensional space, we rewrite the coordinate vector x = (x, y, z) 
as x = (x1 , x2 , x3) . Now consider an equation describing a plane in three
dimensional space, viz., 

(A. l )  

where ai and c are constants. This equation can be written as 

3 

(A.2) 
i=l 

In tensor analysis, we introduce the Einstein summation convention and 
rewrite Equation (A.2) in the shorthand form 
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The Einstein summation convention is as follows: 

Repetition of an index in a term denotes summation with respect 
to that index over its range. 

The range of an index i is the set of n integer values 1 to n. An index that is 
summed over is called a dummy index; one that is not summed is called a free 
index. Since a dummy index simply indicates summation, it is immaterial what 
symbol is used. Thus, aixi may be replaced by ajXj, which is obvious if we 
simply note that 

3 3 
' 
a ·x  · 

'-- J J 
i=l j=l 

(A.4) 

As an example of an equation with a free index, consider a unit normal vector 
n in three-dimensional space. If the unit normals in the x1 ,  x2 and x3 directions 
are h,  b and i3, then the direction cosines a1 .  a2 and a3 for the vector n are 

(A.5) 

There is no implied summation in Equation (A.5). Rather, it is a shorthand for 
the three equations defining the direction cosines. Because the length of a unit 
vector is one, we can take the dot product of (a1 , a2 , a3) with itself and say that 

(A.6) 

As another example, consider the total differential of a function of three 
variables, p(x� ,  x2 , :r:3 ) .  We have 

ap ap ap 
dp = 

a 
dxl + 

a 
dx2 + 

a 
dx3 

X1 X2 X3 

In tensor notation, this is replaced by 

dp 

(A.7) 

(A.8) 

Equation (A.8) can be thought of as the dot product of the gradient of p, namely 
'\lp, and the differential vector dx (dx � ,  dx2, dx3) .  Thus, we can also say that 
the i component of \1 p, which we denote as (\7 p ) i ,  is given by 

(\lp) i 
ap 

a -- P, i 
X i  

(A.9) 

where a comma followed by an index is tensor notation for differentiation with 
respect to Xi. Similarly, the divergence of a vector u is given by 

(A. l 0) 

where we again denote differentiation with respect to Xi by " ,  i". 
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Thus far, we have dealt with scalars and vectors. The question naturally 
arises about how we might handle a matrix. The answer is we denote a matrix 
by using two subscripts, or indices. The first index corresponds to row number 
while the second corresponds to column number. For example, consider the 3 x 3 

matrix (A] defined by 

(A] = 
A1 1  A12 J113 
;121 1122 1123 
A31 A32 J133 

(A. I I ) 

In tensor notation, we represent the matrix (A] as J!ij ·  If we post-multiply an 
m x n matrix Bij by an n x 1 column vector x j ,  their product is an m x 1 
column vector Yi · Using the summation convention, we write 

(A. 1 2) 

Equation (A. 1 2) contains both a free index (i) and a dummy index (j). The 
product of a square matrix J!ij and its inverse is the unit matrix, i .e., 

1 0 0 
0 1 0 
0 0 1 

Equation (A. l 3) is rewritten in tensor notation as follows: 

where 8ij is the Kronecker delta defined by 

1 ,  
0, 

We can use the Kronecker delta to rewrite Equation (A.6) as 

(A. l 3) 

(A. 1 4) 

(A. 1 5) 

(A. 1 6) 

This corresponds to pre-multiplying the 3 x 3 matrix 8ij by the row vec
tor (ex 1 , cx2 , cx3 ) and then post-multiplying their product by the column vector 
(cx1 , cx2 ,  a3 )T, where superscript T denotes transpose. 

The determinant of a 3 x 3 matrix J!ij is 

J111 A1 2 J113 
J121 A22 J123 
J131 A32 J133 

Aui122J133 + A21A32A13 + J131J112A23 
-Aui132A23 - J112A21A33 - A13J122J131 

(A. 1 7) 
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Tensor analysis provides a shorthand for this operation as well. Specifically, we 
replace Equation (A. 1 7) by 

(A. 1 8) 

where Erst is the permutation tensor defined by 

E123 E231 E31 2 1 
E2 13 E32 1 E132 -1 (A. 1 9) 
E1 1 1  = E222 E333 E1 1 2 E1 1 3  E22 1 -- E223 E331 E332 0 

In other words, Eij k vanishes whenever the values of any two indices are the 
same; Eijk 1 when the indices are a pennutation of 1 ,  2, 3;  and €ijk - 1 
otherwise. 

As can be easily verified, the cross product of two vectors a and b can be 
expressed as follows. 

(a X b)i €ijkajbk 
In particular, the curl of a vector u is 

= E ·  " kUk . tJ ,J 

(A.20) 

(A.2 1 )  

The Kronecker delta and permutation tensor are very important quantities 
that appear throughout this book. They are related by the t:-6 identity, which is 
the following. 

(A.22) 

All that remains to complete our brief introduction to tensor analysis is to 
define a tensor. Tensors are classified in terms of their rank. To determine the 
rank of a tensor, we simply count the number of indices. 

The lowest rank tensor is rank zero which corresponds to a scalar, i .e., a 
quantity that has magnitude only. Thermodynamic properties such as pressure 
and density are scalar quantities. Vectors such as velocity, vorticity and pressure 
gradient are tensors of rank one. They have both magnitude and direction. 
Matrices are rank two tensors. The stress tensor is a good example for illustrating 
physical interpretation of a second-rank tensor. It defines a force per unit area 
that has a magnitude and two associated directions, the direction of the force 
and the direction of the normal to the plane on which the force acts. For a 
normal stress, these two directions are the same; for a shear stress, they are (by 
convention) normal to each other. 

As we move to tensors of rank three and beyond, the physical interpretation 
becomes more difficult to ascertain. This is rarely an issue of great concern since 
virtually all physically relevant tensors are of rank 2 or less. The permutation 
tensor is of rank 3,  for example, and is simply defined by Equation (A. 1 9). 
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A tensor aiJ is symmetric if aiJ aJi · Many important tensors in mathe-
matical physics are symmetric, e.g., stress, strain and strain-rate tensors, moment 
of inertia tensor, virtual-mass tensor. A tensor is skew symmetric if aiJ -aJi · 
The rotation tensor, nij � ( Ui,j - Uj,i )  is skew symmetric. 

As a final cotmnent, in perfonning tensor-analysis operations with tensors that 
are not differential operators, we rarely have to worry about preserving the order 
of tenns as we did in Equation (A . 1 6). There is no confusion in writing oi.iaiaJ 
in place of aiOiJ a J .  This is only an issue when the indicated summations actually 
have to be done. However, care should be exercised when differentiation occurs. 
As an example, \7 · u 8ud OXi is a scalar number while u · \7 ui8 / 8xi is a 
scalar differential operator. 
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Problems 

APPENDIX A. CARTESIAN TENSOR ANALYSIS 

A.l Use the E-6 identity to verify the well known vector identity 

A X (B X C) = (A · C)B - (A · B)C 
A.2 Show that, when i ,  j, k range over 1 ,  2, 3 

(a) 6ijJji = 3 

(b) EijkEjki = 6 
(c) EijkAjAk = 0 

(d) 6ij8jk = 6ik 

A.3 Verify that 2Si3,j = \72ui for incompressible flow, where Sij is the strain-rate tensor, 

i.e., Sij = � (ui,J + Uj,i ) .  

A.4 Show that the scalar product S'ij nji vanishes identically if Sij is a symmetric tensor 

and nij is skew symmetric. 

A.5 If Uj is a vector, show that the tensor Wik = EijkUJ is skew symmetric. 

A.6 Show that if Ajk is a skew-symmetric tensor, the unique solution of the equation 

Wi = � EijkAjk is Arnn = EmniWi . 

A.7 The incompressible Navier-Stokes equation in a coordinate system rotating with con
stant angular velocity n and with position vector x = xdk is 

au 
at + U • V'u + 2!1 X U =  -\7 p -

p 

(a) Rewrite this equation in tensor notation. 

(b) Using tensor analysis, show that for n = n k (k is a unit vector aligned with !1), 

the centrifugal force per unit mass is given by 

1 � 1 2 -fl X fl X X =  \7( 2n�XkXk) - [k · \7( 2n XkXk )]k 

A.8 Using tensor analysis, prove the vector identity 

1 u · V'u = V'( -u · u) - u X (V' x u) 2 



When we work with perturbation methods, we are constantly dealing with the 
concept of order of magnitude. There are three conventional order symbols 
that provide a mathematical measure of the order of magnitude of a given quantity, 
viz., Big 0, Little o, and r-.J .  They are defined as follows. 

Big 0: 
f(<S) O [g(<5)] as <5 <50 if a neighborhood of <50 exists and a constant M 

exists such that I f  I :::; Mig I ,  i.e., !(<5)/ g(<S) is bounded as <5 <50 • 

Little o :  
f(<S) o[g(<S)] as <5 <50 if, given any E > 0, there exists a neighborhood 

of <So such that I f  I :::; E lg l , i .e., !(<5) / g(<S) 0 as <5 <So . 

l'oJ • 
• 

f(<S) '"'"' g(<S) as <5 <50 if f(<S)j g(<S) � 1 as <5 -

For example, the Taylor series for the exponential function is 

- X  e 1 2 1 3 
1 - X + - X - - X  + · · · 

2 6 (B . l )  

where ' ' ·  · · " is conventional shorthand for the rest of the Taylor series, i .e . ,  

. . .  = 

n! (B .2) 
n=4 
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In terms of the ordering symbols, we can replace "· · ·" as follows. 

1 1 1 2 1 3 3 e-x = 1 - x + -x2 - -x3 + O(x4) 1 - x + -x - -x + o(x ) (B.3) 
2 6 2 6 

We define an asymptotic sequence of functions as a sequence 4>n ( 8) for 
n 1 ,  2, 3, . . . , satisfying the condition 

as 

Examples of asymptotic sequences are: 

4>n( 8) --

4>n(8) 

</>n( 8) 

4>n (x) --

1 , (8 - 80) ,  (8 - 80) 2 , (8 - 80 )3 , . . .  

1 ,  81/2 ' 8, 83/2 ' 0 0 0 

1 , 8, 82 fn8, 82 , . . .  
- 1 -2 -3 -4 X , X  , X  , X  , • • .  

(B.4) 

8 8o 
8 ) 0  

0 
(B.5) 

X 00 

We say that g(8) is transcendentally small if g(8) is o[¢n(8)] for all n. For 
example, 

for all n (B.6) 

An asymptotic expansion is the sum of the first N terms in an asymptotic 
sequence. It is the asymptotic expansion of a function F(8) as 8 80 provided 

N 
F(8) _ an¢n(8) + o[¢N (8)] (B .7) 

n=1 
The following are a few useful asymptotic expansions generated from simple 
Taylor-series expansions, all of which are convergent as 6 · 0. 

( 1  + 6)n rv 

fn(1 + 15) 

( 1  - 15)- 1  

eo 

cos 6 

sin 6 

tan 6 

1 + n6 + n(�-1) 82 + 0(153) 

6 - �152 + !153 + 0(154) 

1 + 6 + 82 + 0(153) 

1 + 6 + �82 + 0(153 ) 
1 - 1152 + 1 154 + 0 ( 156) 2 24 
6 - .!.153 + 1 155 + O(J7) 6 1 20 
J + .!.153 + 2 155 + 0(157 ) 3 15 

(B.8) 

Not all asymptotic expansions are developed as a Taylor series, nor are they 
necessarily convergent. For example, consider the complementary error function, 
erfc(x) , i .e., 

2 
erfc(x) = 

fi x 

00 

(B .9) 
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We can generate an asymptotic expansion using a succession of integration-by
parts operations. (To start the process, for example, multiply and divide the 
integrand by t so that t exp( -t2 ) becomes integrable in closed form.) The 

• • 

expanston ts: 

erfc(x) as X - 00 

(B . l O) 

A simple ratio test shows that this series is divergent for all values of x .  
However, if we define the remainder after the first N tenns of the series as 
RN(x ) , there are two limits we can consider, viz., 

and (B. l l ) 

Thus, this divergent series gives a good approximation to erfc(x) provided we 
don't keep too many terms ! This is often the case for an asymptotic series. 

Part of our task in developing a perturbation solution is to determine the 
appropriate asymptotic sequence. It is usually obvious, but not always. Also, 
more than one set of <Pn ( 8) may be suitable, i.e., we are not guaranteed uniqueness 
in perturbation solutions. These problems, although annoying from a theoretical 
viewpoint, by no means diminish the utility of perturbation methods. Usually, 
we have physical intuition to help guide us in developing our solution. This 
type of mathematical approach is, after all, standard operating procedure for the 
engineer. We are, in essence, using the methods Prandtl and von Karman used 
before perturbation analysis was given a name. 

A singular-perturbation problem is one in which no single asymptotic 
expansion is uniformly valid throughout the field of interest. For example, while 
8jx112 0 (8) as 8 0, the singularity as x 0 means this expression is 
not uniformly valid. Similarly, 8-enx 0(8) as 8 0 and is not uniformly 
valid as x 0 and as x oo .  The two most common situations that lead to a 
singular-perturbation problem are: 

(a) the coefficient of the highest derivative in a differential equation is very 
small; 

(b) difficulties arise in behavior near boundaries. 

Case (b) typically arises in analyzing the turbulent boundary layer where loga
rithmic behavior of the solution occurs close to a solid boundary. The following 
second-order ordinary differential equation illustrates Case (a). 

"' d2F dF 
F 

u ds2 + ds + 
= 

0' O < s < l  - - (B. l2) 
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We want to solve this equation subject to the following boundary conditions. 

and (B. l 3) 

We also assume that 8 is very small compared to 1 ,  i.e., 

8 « 1  (B. 14) 

This equation is a simplified analog of the Navier-Stokes equation. The 
second-derivative term has a small coefficient just as the second-derivative term 
in the Navier-Stokes equation, in nondimensional fotm, has the reciprocal of the 
Reynolds number as its coefficient. An iimnediate consequence is that only one 
boundary condition can be satisfied if we set 8 0. This is similar to setting 
viscosity to zero in the Navier-Stokes equation, which yields Euler' s  equation, 
and the attendant consequence that only the normal-velocity surface boundary 
condition can be satisfied. That is, we cannot enforce the no-slip boundary 
condition for Euler-equation solutions. 

The exact solution to this equation is 

where 

F(s; 8) 

1 - v'1 - 48 
28 

ea(l-s)  _ ea-{3s/t5 
1 - ea-{3/tS 

and (3 
1 - v'1 - 48 

2 
which clearly satisfies both boundary conditions. If we set 8 
tion (B . l2), we have the following first-order equation: 

and the solution, F(s; 0) ,  is 

dF 
ds + F  0 

p r  s · 0) \ ' 
1 - s  e 

(B. l 5) 

(B. 1 6) 

0 in Equa-

(B. 1 7) 

(B . 1 8) 

where we use the boundary condition at s 1 .  However, the solution fails 
to satisfY the boundary condition at s 0 because F(O; 0) e 2 .  71828 · · · . 

Figure B . l  illustrates the solution to our simplified equation for several values 
of 8. 

As shown, the smaller the value of 8, the more closely F(s; 0) represents the 
solution throughout the region 0 < s :::; 1 .  Only in the immediate vicinity of 
s 0 is the solution inaccurate. The thin layer where F(s; 0) departs from the 
exact solution is called a boundary layer, in direct analogy to its fluid-mechanical 
equivalent. 
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u(y; 8) 
e 

0.05 

0 

0 1 y 

Figure B. l :  Solutions to the model equation for several values of o. 

To solve this problem using perturbation methods, we seek a solution that 
consists of two separate asymptotic expansions, one known as the outer expan
sion and the other as the inner expansion. For the outer expansion, we assume 
a solution of the form 

N 

Fauter (s; o) '""" (B . 1 9) 
n=O 

where the asymptotic sequence functions, <Pn(o), will be determined as part ofthe 
solution. Substituting Equation (B. 1 9) into Equation (B. 1 2) yields the following. 

N 
'\"' 
/ ' 

-- 0 (B.20) 
n=O 

Clearly, if we select 

(B.2 1 )  

we, in effect, have a power-series expansion. Equating like powers of o, the 
leading-order (n 0) problem is Equation (B. l 7), while the second-derivative 
term makes its first appearance in the first-order ( n = I )  problem. Thus, our 
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perturbation solution yields the following series of problems for the outer ex-
• 

panston. 

dFo F. 
d8 + 0 

dF1 F 
d8 + 1 

dF2 p. 
d8 + 2 

• 
• 
• 

0 

Provided we solve the equations in sequence starting at the lowest order 
(n 0) equation, the right-hand side of each equation is known from the pre
ceding solution and serves simply to make each equation for n 2: 1 non
homogeneous. Consequently, to all orders, the equation for Fn ( 8) is of first 
order. Hence, no matter how many terms we include in our expansion, we can 
satisfy only one of the two boundary conditions. As in the introductory remarks, 
we elect to satisfy F(l)  1 .  In tenns of our expansion [Equations (B . 1 9) and 
(B.2 1 )], the boundary conditions for the Fn are 

and for n > 1 - (B .23) 

The solution to Equations (B.22) subject to the boundary conditions specified in 
Equation (B .23) is as follows. 

• 
• 
• 

1 --s  e 
( 1 - 8)e1 - s 

Hence, our outer expansion assumes the following form. 

(B.24) 

(B.25) 

In general, for singular-perturbation problems, we have no guarantee that 
continuing to an infinite number of terms in the outer expansion yields a solution 
that satisfies both boundary conditions. That is, our expansion may or may not be 
convergent. Hence, we try a different approach to resolve the region near 8 0. 
We now generate an inner expansion in which we stretch the 8 coordinate. 
That is, we define a new independent variable a- as follows. 

8 

a- - M(8) (B.26) 
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We assume an inner expansion in terms of a new set of asymptotic-sequence 
functions, '1/Jn ( 8), i.e., 

N 

(B .27) 
n=O 

To best illustrate how we determine the appropriate stretching function, f.L( 8), 
consider the leading-order terms in the original differential equation, viz., 

dfo 
+ da 

'1/Jo 
+ fo'l/Jo 0 (B .28) 

First of all, we must consider the three possibilities for the order of magnitude of 
J.L( 8), viz., f.L » 1 ,  f.L ,..... 1 and f.L « 1 .  If f.L » 1 ,  inspection of Equation (B .28) 
shows that fo 0 which is not a useful solution. If f.L rv 1 ,  we have the outer 
expansion. Thus, we conclude that f-l « 1 .  

We are now faced with three additional possibilities: 8'1/Jo/ f.L2 » '1/Jo / f-l; 
8't/Jo / 112 ,..... '1/Jo / f.L; and 8'1/Jo/ f.L2 « '1/Jo/ f.L. Using the boundary condition at s - 0, 
assuming 8'1/Jo / f.L2 » '1/Jo/ f.L yields fo Aa where A is a constant of integration, 
While this solution might be useful, we have leamed nothing about the stretching 
function, f.L(8) . At the other extreme, 8'1/Jo/f.-l2 « '1/Jo/f.-l, we obtain the trivial 
solution, fo 0, which doesn't help us in our quest for a solution. The final 
possibility, 8'1/Jo/ M2 rv '1/Jo/ f.L, is known as the distinguished limit, and this is the 
case we choose. Thus, 

(B .29) 

Again, the most appropriate choice for the 1/Jn ( 8) is 

(B .30) 

The following sequence of equations and boundary conditions define the inner 
• expan:�non. 

d2 fo dfo 
da2 + -da-
d2h dfi 
da2 + da 
d2h dh 
da2 + da 

fn (O) = 0 

• 
' 
• 

0 

- fo • 

-!I 

for all n > 0 -

(B .3 1 )  

(B.32) 
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Solving the leading, or zeroth, order problem (n = 0) and the first order 
problem (n 1), we find 

fo (a) 

/I (a) 
• 
• 
• 

Ao ( 1  - e-a ) 

(AI - Aoa) (AI + Aoa)e_.,. (B .33) 

where A0 and AI are constants of integration. These integration constants arise 
because each of Equations (B.3 1 )  is of second order and we have used only one 
boundary condition. 

To complete the solution, we perform an operation known as matching. To 
motivate the matching procedure, note that on the one hand, the boundary s 1 
is located at a 1/6 oo as 8 0. Hence, we need a boundary condition 
for Pinner( a; 8) valid as a oo .  On the other hand, the independent variable 
in the outer expansion is related to a by s 8a. Thus, for any finite value of 
a, the inner expansion lies very close to s 0. We match these two asymptotic 
expansions by requiring that 

lim Pinner( a; 8) lim Pouter (s; 8) 
.,. 00 8 0 

(B.34) 

The general notion is that on the scale of the outer expansion, the inner expansion 
is valid in an infinitesimally thin layer. Similarly, on the scale of the inner 
expansion, the outer expansion is valid for a region infinitely distant from s 0.  
For the problem at hand, 

and lim Po(s) e 
s 0 

(B .35) 

Thus, we conclude that 
(B .36) 

Equivalently, we can visualize the existence of an overlap region between 
the inner and outer solutions. In the overlap region, we stretch the s coordinate 
according to 

s 
v(8) ' 

8 « u(<S) « 1 (B .37) 

In terms of this intermediate variable, for any finite value of s*,  

s ---+ 0  and ---+ 00 as v (8) . 0 (B .38) 

Using this method, we can match to as high an order as we wish. For 
example, matching to nth order, we perform the following limit operation. 

Pinner - Pouter 
sn (B .39) 



For the problem at hand, the independent variables s and a become 

and a v(8)s* 
8 

Hence, replacing e-v(o)s* by its Taylor-series expansion, we find 
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(B.40) 

(B.41) Pouter "' e { 1 - v(8)s* + 8 + 0[8v(8)] }  

Similarly, noting that e-1'(o)s*  18 is transcendentally small as 8 - 0, we have 

Pinner "' Ao - Aov(8)s* + A18 + 0(82) 

Thus, holding s* constant, 

1. Pinner - Pouter 1m rv 8 0 8 
(Ao - e) (1 - v(8)s* ) + (A1 - e)8 + o(8) 

8 

Clearly, matching to zeroth and first orders can be achieved only if 

Ao A1 e 

In summary, the inner and outer expansions are given by 

Fouter (s; 8) rv el -s [1 + ( 1 - s)8 + 0(82 )] 

Pinner( a; 8) rv e { ( 1  - e-u ) + [ (1 - a) - (1 + a)e-u]8 + 0(62 ) } 
a s/8 

(B.42) 

(B.43) 

(B.44) 

(B.45) 
Finally, we can generate a single expansion, known as a composite expan

sion, that can be used throughout the region 0 ::::; s ::::; 1 .  Recall that in the 
matching operations above, we envisioned an overlap region. In constructing 
a composite expansion, we note that the inner expansion is valid in the inner 
region, the outer expansion is valid in the outer region, and both are valid in the 
overlap region. Hence, we define 

Pcornposite Pinner + Pouter - Pep (B.46) 

where Fcp is the common part, i .e., the part of the expansions that cancel in the 
matching process. Again, for the case at hand, comparison of Equations (B .4 1 )  
and (B.42) with A0 and A1 given by Equation (B.44) shows that 

(B.47) 

where we use the fact that v(8)s* 8a. Hence, the composite expansion is 

F 1 - s 1 -s/ol + cornposite rv e - e J ( 1 - s)e l-s - (1 + s/8)el - sjo 8 + 0(82 ) 
(B.48) 
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y(x) 
3.0 

y(x) 

€ -
-

' ' ' ' ' ' ' ' ' ' ' 

0.20 

' - -

• • . . � . • • • • • • • • • 
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X 

€ = 0.05 
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X 

Figure B .2: Comparison of asymptotic expansions and the exact solution for the 
sample boundary-value problem: o exact; - - - outer expansion; · · · · · · inner 
expansion; composite expansion. 

What we have done is combine two non-uniformly valid expansions to achieve 
a uniformly-valid approximation to the exact solution. Retaining just the 
zeroth-order term of the composite expansion yields an approximation to the 
exact solution that is accurate to within 7% for r: as large as 0.2 ! This is actually 
a bit fortuitous however, since the leading term in Equation (B .48) and the exact 
solution differ by a transcendentally small tem1. Figure B .2 compares the two
term inner, outer and composite expansions with the exact solution for E 0 .05 
and E 0.20. 

For the obvious reason, perturbation analysis is often referred to as the theory 
of matched asymptotic expansions. The discussion here, although sufficient 
for our needs, is brief and covers only the bare essentials of the theory. For 
additional information, see the books by Van Dyke ( 1 975), Bender and Orszag 
( 1 978), Kevorkian and Cole ( 1 98 1 ), Nayfeh ( 1 98 1 )  or Wilcox ( l 995a) on this 
powerful mathematical theory. 
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Problems 

B.l Consider the polynomial 

x3 - x2 + r5 = 0 

(a) For nonzero r5 < 4/27 this equation has three real and unequal roots. Why is this 
a singular-perturbation problem in the limit r5 0? 

(b) Use perturbation methods to solve for the first two tenus in the expansions for the 

roots. 

B.2 Determine the first two terms in the asymptotic expansion for the roots of the following 

polynomial valid as r5 0. 

r5x3 + x + 2 + r5 = 0 

B.3 Consider the following nonlinear, first-order initial-value problem. 

dy 2 
dt 

+ y + r5y = o, y(O) = 1 

Detem1ine the exact solution and classifY this problem as regular or singular in the limit 

r5 0. Do the classification first for t > 0 and then for t < 0. 

B.4 The following is an example of a perturbation problem that is singular because of 
nonuniformity near a boundary. Consider the following frrst-order equation in the limit 

E 0. 
3 dy 2 X = EY dx ' y(1 )  = 1 

The solution is known to be finite on the closed interval 0 � x � 1. 
(a) Solve for the frrst two terms in the outer expansion and show that the solution has 

a singularity as x 0. 

(b) Show that there is a boundary layer near x = 0 whose thickness is of order E 1/2
• 

(c) Solve for the first two terms of the inner expansion. Note that the algebra simplifies 
if you do the zeroth-order matching before attempting to solve for the next term in 

the expansion. 

B.5 Generate the first two terms in a perturbation solution for the following initial-value 

problem valid as r5 0. 

y(O) = - 2  + 58 

B.6 Generate the frrst two terms of the inner and outer expansions for the following 

boundary-value problem. Also, construct a composite expansion. 

d2 d c5 Y + y - xy = 0, 
dx2 dx 

y(O) = 0 and 1/2 y(1)  = e 
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B. 7 Generate the flrst two terms of the inner and outer expansions for the following 
boundary-value problem. Also, construct a composite expansion. 

8 « 1  

y(O) = 1 and y(1)  = 1/6 
B.8 This problem demonstrates that the overlap region is not a layer in the same sense 

as the boundary layer. Rather, its thickness depends upon how many tem1s we retain in 

the matching process. Suppose we have solved a boundary-layer problem and the flrst 
three terms of the inner and outer expansions valid as E 0 are: 

where 

( ) 1 -x2 2 -2x2 O( 3) Youter x; E ,......, + Ee + E e + E 

X 
� :::: El/2 

Determine the coefficients A, B and C. Explain why the thickness of the overlap region, 
v(E) , must lie in the range 

El /2 « v(E) « El /4 

as opposed to the nonnally assumed range c1/2 « v( E) « 1.  
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anion are 

The companion CD supplied with this book contains a collection of computer 
programs that can be used to develop and validate turbulence models. The CD 
includes the following. 

• FORTRAN source code 

• Executable programs built with the Lahey Fortran-90 compiler 

• Menu-driven Visual C++ input-data preparation programs that should func
tion on all versions of the Microsoft Windows operating system 

• Visual C++ plotting programs to display program output in graphical form 

• Detailed technical and user information 

The programs supplied on the companion CD fall into five categories . . .  

1.  Free Shear Flows: Programs JET, MIXER and WAKE solve for free-shear
flow farfield behavior. 

2. Channel and Pipe Flow: Program PIPE solves for two-dimensional channel 
flow and axisymmetric pipe flow under fully-developed conditions. 

3. Bo undary-Layer Perturbation Analysis: Programs DEFECT and SUB
LAY generate solutions for the classical defect layer and the viscous sublayer. 

4. Botmdary Layers: Program EDDYBL is a two-dimensional/axisymmetric 
boundary-layer program applicable to compressible boundary layers under lami
nar, transitional and turbulent flow conditions. 

5. Se11arated Flows: Program EDDY2C is a two-dimensional/axisymmetric 
Reynolds-Averaged Navier Stokes (RANS) program applicable to compressible 
separated flows under laminar and turbulent flow conditions. 

477 
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The menu-driven input-data preparation programs include default input val
ues that can be modified as needed. Additionally, for Programs EDDYBL and 
EDDY2C, the companion CD includes input-data files for many of the test cases 
discussed throughout this book. The documentation on the CD indicates the flow 
each file corresponds to. 

NOTE: If you discover any bugs in the software or errors in its docu
mentation, please report what you have found by sending email through 
DCW Industries' Internet site at http://www.dcwindustries.com. As they 
become available, revisions and/or corrections to the software will be down
loadable from the site, so you might want to check for updates from time 
to time. 
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(see Pressure-strain correlation) 

Rapid pressure-strain models: 
Launder-Reece-Rodi, 328 
Lumley, 329 
Speziale-Sarkar-Gatski, 3 2 9 

Realizability, 280, 3 1 0, 323, 329 
Realization, 435 
Resolvable scale, 438-439 
Return to isotropy, 304, 3 1 0, 3 1 3 , 327, 337 
Reynolds' analogy, 250 
Reynolds-stress (defined), 40 

anisotropy tensor, 324 
equation, 43, 248 
tensor invariants, 329 

Richardson extrapolation, 4 1 6-4 1 7 
Richardson number, 307 
Rodi' s ASM approximation, 3 1 2  
Rossby number, 352 
Rotating channel flow, 3 14, 3 5 I 
Rotation tensor (defined), 127 
Roughness: 

completely-rough surface, 1 8  
strip, numerical, 2 1 6  

Round-jet/plane-jet anomaly, 1 36, 1 54- 1 55,  
341 -342 

Rubel-Melnik transformation, 384, 389-390, 
398, 42 1 
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Second-moment closure models: 
(see Stress-transport models) 

Second-order closure models: 
(see Stress-transport models) 

Second viscosity: 
eddy, 250 
molecular, 243 

Secondary motion, 229, 304, 308, 3 1 1 , 3 1 3, 
3 1 7, 322, 3 54, 372 

Self preserving (defined), 60 
Self similar (see Self preserving) 
SGS (see Subgrid-scale) 
SGS Reynolds stress, 439 
Similarity-solution method, 63-66 

existence conditions, 64-65 
Single-point correlation, 45-46, 326 
Singular-perturbation problem: 

(defined), 467 
Slightly-rough surface, 1 85,  346, 385 
Slow pressure strain: 

(see Pressure-strain correlation) 
Smagorinsky model, 440-442, 448 
Specific dissipation (defined), 1 24- 126 
Spectral method, 434, 436, 438 
Spinning, segmented cylinder, 3 55-356 
Spreading rate (defined): 

far wake, 1 1 6 
jet, 72 
mixing layer, 69 

Stability: 
analysis, 404-408 
conditional, 405 
unconditional, 402, 406 

Stanford Olympics: 
First, 9 1  
Second, 9 1  

Stationary turbulence, 34, 36, 38, 46, 48 
Stiffness, 343, 3 8 1 -383, 4 1 5  
Strain-rate tensor (defined), 1 27 
Strange attractor, 453-454 
Stratification, 308, 322 
Streamline curvature, 24, 80, 1 6 1 ,  304-307, 

3 1 4, 3 1 7, 322, 342, 354 
Stress limiter, 1 27, 1 3 6, 1 39, 1 52- 1 53, 1 60, 

2 1 8, 22 1 -223, 280-282, 309, 
3 1 7-320 

Stress-transport models, 322-334 
Daly-Harlow, 26, 327 
Donaldson, 26, 323-324, 327 
Fu-Launder-Tselepidakis, 330, 338 
Gil:Json-Launder, 328, 352 
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Gibson-Younis, 3 6 1 -362 
Hanjalit-Jakirlit-Hadzit, 3 54 
Launder-Reece-Rodi, 26, 325, 329-

342, 344, 348-349, 3 5 1 ,  354, 
36 1 -362, 376-377 

LRR (see Launder-Reece-Rodi) 
Mellor-Herring, 324 
Shih-Lumley, 330 
Wilcox multiscale, 332, 338, 340, 356, 

359-360 
Wilcox-Rubesin, 323, 332, 356-357 
Wilcox Stress-w, 332-342, 344-347, 

349-356,363,  365-367, 3 70-3 72, 
376-379, 384-385 

Subgrid scale, 437-439, 44 1 
Sublayer, viscous (see Viscous sublayer) 
Subrange, inertial, 1 2- 1 4, 49, 43 1 , 440-44 1 
Sutface mass transfer, 1 86-1 87, 207, 346-347 
Surface roughness, 19, 1 82-1 85,  274 

T 

Taylor rnicroscale, 48-49, 429, 448 
Term-by-term modeling (see Drastic surgery) 
Thermal conductivity, 244 
Townsend's constant (defined), 1 1 2 
Transcendentally small (defined), 466 
Transonic, 283-284, 32 1 ,  365-366 
TST (see Transcendentally small) 
Turbulence kinetic energy (defined), 44 
Turbulence Mach number, 252, 254, 26 1 
Turbulence Reynolds number (defined), 194, 

204 
Turbulent front, 1 48-1 50, 1 52, 391 
Turbulent/nonturbulent interface, 67, 69, 

1 35, 1 42, 1 52, 1 70, 387-399, 
4 1 6, 42 1 

Turbulent transport, 58, 6 1 ,  1 09- 1 1 0, 1 1 3 ,  
245, 247, 250-2 5 1 ,  253, 3 1 1 ,  
324-325, 3 3 1  

Two-equation models, 1 22-229 
k-E: 

Chien, 1 93-199, 236, 267-268 , 2 7 1 -
273, 3 6 1 -362, 386, 403 

Durbin, 1 93 
Dutoya-Michard, 1 93 
Fan-Lakshminarayana-Barnett, 194, 

1 96, 403 
Hassid-Poreh, 1 9  3, 196 
Hoffmann, 1 93 
Hwang-Lin, 1 94 
Jones-Launder, 1 28, 1 93 - 1 94, 1 96, 

1 98- 199, 209, 234, 273, 399, 403 
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Lam-Bremhorst, 193-199, 209, 236, 
386, 403 

Launder-Shanna, 26, 1 28-1 30, 1 32, 
133,  1 36, 1 38-1 39, 143- 1 45,  
1 47-1 48, 1 50-1 52, 1 54, 160-1 6 1 ,  
1 67-168, 1 70-1 74, 1 77-1 78, 1 8 1 ,  
1 82, 1 87, 1 89-200, 208-209, 
2 1 8-220, 224-23 1 '  236, 265-270, 
273, 278, 29 1 -292, 296-299, 
330-33 1 '  341 -342, 352, 354-355, 
403 

Myong-Kasagi, 1 93 
Rahman-Siikonen, 1 94 
Reynolds, 1 93 
RNG, 1 30, 1 42-145,  1 6 1 ,  1 69- 1 7 1 ,  

1 73 , 279, 298 
Rodi, 292, 294 
Shih-Hsu, 193 
Speziale-Abid-Anderson, 1 93 
Standard (Launder-Sharma) 
Yang-Shih, 1 94, 236, 403 
Zhang-So-Speziale-Lai, 1 94, 269, 

273 
k-k.e: 

Ng-Spalding, 1 3 1  
Rodi-Spalding, 1 3 1  
Rotta, 1 23 
Smith, 1 3 1  
Vollmers-Rotta, 389 

k-kr: 
Zeiennan-Wolfshtein, 123, 1 32, 

1 3 5  
k-£: 

Benay-Servel, 1 3 1  
Rotta, 123 
Smith, 1 3 1  

k-r: 
Speziale-Abid-Anderson, 1 32, 1 77, 

1 78 
k-w: 

Durbin, 280, 293 
Hellsten, 26, 124, 1 26, 1 5 1 ,  392, 

393 
Kok, 26, 1 24, 1 26, 146, 1 5 1 ,  23 1 ,  

392 
Kolmogorov, 24, 26, 1 22, 124- 1 26, 

1 29, 1 33, 1 77 
Menter, 26, 1 24, 2 1 9, 279-280, 283, 

284, 288, 296, 321  
Moore-Moore, 295 
Peng-Davidson-Holmberg, 1 24, 

1 26, 1 46, 1 5 1  
Speziale-Abid-Anderson, 1 24, 126 
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Wilcox ( 1 988), 26, 1 24, 126, 1 28, 
146-149, 1 52,  1 54, 1 73,  1 77, 
1 78, 1 86, 2 1 8-220, 268, 282, 
283, 29 1 ,  293, 295, 3 2 1 ,  340, 
360, 393-395 

Wilcox (1 998), 26, 1 98-1 99, 3 1 7, 
333-334, 344, 346, 3 54, 373, 
385 

Wilcox (2006), 1 24-1 28, 1 33 ,  1 35,  
1 3 7, 13 9-1 40, 143 - 1 45, 1 47, 
1 54- 1 55, 1 59-1 6 1 , 1 67-1 68, 170-
1 79, 1 8 1 - 1 82, 1 86-1 92, 1 98, 
200, 2 1 8-222, 227-236,255-274, 
277-278,283-290, 296-299, 306, 
341 , 355-356, 363-367, 370-3 7 1 ,  
384, 392-393 

k-w2 : 
Saffman, 26, 1 24, 1 29, 1 35 ,  1 76-

1 77, 389, 397 
Saffman-Wilcox, 26, 124, 263, 276, 

28 1 
Spalding, 1 24, 1 26, 1 77-1 78 
Wilcox-Alber, 26, 1 24, 1 26, 254 
Wilcox-Rubesin, 26, 1 24- 1 26, 1 77, 

1 96-1 97,205, 304, 309, 356-357, 
40 1 

Wilcox-Traci, 26, 1 24 
k112-w and k-(: 

Coakley, 1 24 
Robinson-Harris-Hassan, 124, 1 26, 

1 28, 1 46, 1 54- 1 55,  44 7 
Two-phase flow, 445 
Two-point correlation, 44-49, 1 3 1 ,  326 

u 

Universal equilibrium theory, 1 0, 1 2  
Unsteady flow, 37, 356-360, 403, 408 

v 

Van Driest damping function (defined), 77 
Velocity thickness (defined), 80 
Viscous-interface layer, 397-398, 423 
Viscous sublayer, 1 6, 26, 28-29, 74-76, 78, 

103,  125,  1 52, 1 57,  1 6 1 ,  166,  
1 75-1 78, 1 80-1 8 1 , 1 83-1 84, 1 86, 
1 87,  192, 1 98, 200, 206, 2 1 2, 
2 1 8, 228-229, 232, 343-347, 
360, 383-385 , 4 1 9-420, 428, 442 

von Neumann stability analysis: 
(see Stability, analysis) 

Vortex stretching, 6-7, 1 3 5, 140, 1 54, 342 
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Wake (see Far wake) 
Wake-strength parameter, 1 9, 1 69- 1 7 1 , 450 
Wall functions, 1 8 1 - 1 82, 277-278, 343-344, 

4 1 8  
Wall-reflection effect: 

(see Pressure-echo effect) 
Wavenumber (defined), 1 1  
Weak solution, 387-394 
WKB method, 264, 297 

y 

Yap correction, 1 74 

z 

Zero-equation models (see Algebraic models) 
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